-
透明导电氧化物(TCO)是光电子学中的关键材料,与n型TCO相比,关于p型TCO材料的选择较少,其中NiO作为典型的p型TCO材料具有研发透明光电子器件的潜力。在这项研究中,使用脉冲激光沉积,在MgO(001)衬底上成功地得到了不同厚度和Li掺杂浓度的LixNi1-xO薄膜。结果表明,厚度和Li掺杂的增加都显著降低了薄膜的电阻率,并且厚度为50 nm与3%Li掺杂时,薄膜的带隙最大。在薄膜厚度与Li掺杂浓度对其物性调控研究的基础上,选择带隙最大的p型LixNi1-xO与n型La掺杂ASnO3薄膜构造了透明电子器件。I-V测试证实了该透明电子器件的整流特性以及基于透明导电材料pn结的成功构造。这项工作通过将p型NiO与n型ASnO3集成,拓展了透明电子器件的研究与潜在应用。Transparent conducting oxides (TCOs) are crucial materials in optoelectronics, yet p-type TCOs are less studied compared to n-type TCOs. NiO as a typical p-type TCO shows promising potential for transparent optoelectronic devices. In this study, we successfully fabricated LixNi1-xO thin films with varying thicknesses and Li doping levels on MgO(001) substrates using pulsed laser deposition. The results demonstrate that both increased thickness and Li doping levels reduce the resistivity of the films, with the maximum optical bandgap observed at a thickness of 50 nm and 3% Li doping levels. Based on the control of physical properties through film thickness and Li doping, p-type LixNi1-xO with the largest bandgap were selected to construct transparent electronic devices with n-type La-doped ASnO3 films. I-V tests confirmed the rectification properties of the heterostructures, successfully demonstrating the formation of pn junctions. This work enhanced the potential applications of transparent electronic devices by integrating p-type NiO with n-type ASnO3.
-
Keywords:
- transparent conducting oxide /
- thin film /
- doping /
- pnjunction
-
[1] Xia H, Luo M, Wang W, Wang H, Li T, Wang Z, Xu H, Chen Y, Zhou Y, Wang F, Xie R, Wang P, Hu W and Lu W 2022 Light-sci Appl 11 170
[2] Mistry B V, Bhatt P, Bhavsar K H, Trivedi S J, Trivedi U N and Joshi U S 2011 Thin Solid Films 519 3840
[3] Zhang J, Han S, Luo W, Xiang S, Zou J, Oropeza F E, Gu M and Zhang K H L 2018 Appl. Phys. Lett. 112 171605
[4] Joshi U S, Matsumoto Y, Itaka K, Sumiya M and Koinuma H 2006 Appl. Surf. Sci. 252 2524
[5] Yang A, Sakata O, Yamauchi R, Katsuya Y, Kumara L S R, Shimada Y, Matsuda A and Yoshimoto M 2014 Appl. Surf. Sci. 320 787
[6] Jang W L, Lu Y M, Hwang W S and Chen W C 2010 J. Eur. Ceram. Soc. 30 503
[7] Garduño-Wilches I and Alonso J C 2013 Int. J. Hydrogen Energy 38 4213
[8] Moulki H, Park D H, Min B K, Kwon H, Hwang S J, Choy J H, Toupance T, Campet G and Rougier A 2012 Electrochim. Acta 74 46
[9] Ohta H, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T and Hosono H 2003 Appl. Phys. Lett. 83 1029
[10] Zhou T, Yang X M, Yuan J and Liu Q Z 2024 J. Alloys Compd. 984 173953
[11] Sikdar S, Sahu B P and Dhar S 2023 Appl. Phys. Lett. 122 023501
[12] Zhang K H L, Wu R, Tang F, Li W, Oropeza F E, Qiao L, Lazarov V K, Du Y, Payne D J, MacManus-Driscoll J L and Blamire M G 2017 ACS Appl. Mater. Interfaces 9 26549
[13] Dutta T, Gupta P, Gupta A and Narayan J 2010 J. Appl. Phys. 108 083715
[14] Jung M C, Leyden M R, Nikiforov G O, Lee M V, Lee H K, Shin T J, Takimiya K and Qi Y 2015 ACS Appl. Mater. Interfaces 7 1833
[15] Park K H, Ur S C, Kim I H, Choi S M and Seo W S 2010 J. Korean Phys. Soc. 57 1000
[16] Tauc J 1968 Mater. Res. Bull. 3 37
[17] Yang S, Kim J, Choi Y, Kim H, Lee D, Bae J S and Park S 2020 J. Alloy. Compd. 815 152343
[18] Li Y, Li X H, Wang Z X, Guo H J and Li T 2016 Ceram. Int. 42 14565
[19] Liu Q Z, Liu J J, Li B, Li H, Zhu G P, Dai K, Liu Z L, Zhang P and Dai J M 2012 Appl. Phys. Lett. 101 241901
[20] Shanthi E, Dutta V, Banerjee A and Chopra K L 1980 J. Appl. Phys. 51 6243
[21] Burstein E 1954 Phys. Rev. 93 632
[22] Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775
[23] Dakhel A A 2012 J. Alloy. Compd. 539 26
[24] Gupta R K, Ghosh K and Kahol P K 2009 PHYSICA E 41 617
[25] Shah J M, Li Y L, Gessmann T and Schubert E F 2003 J. Appl. Phys. 94 2627
[26] Ohta H, Kamiya M, Kamiya T, Hirano M and Hosono H 2003 Thin Solid Films 445 317
[27] Grundmann M, Klüpfel F, Karsthof R, Schlupp P, Schein F L, Splith D, Yang C, Bitter S and von Wenckstern H 2016 J. Phys. D: Appl. Phys. 49 213001
计量
- 文章访问数: 88
- PDF下载量: 0
- 被引次数: 0