-
采用射频磁控溅射方法, 在低功率和低温条件下利用纯氮气作为反应溅射气体制 备出不同In含量的三元氮化物CuxInyN薄膜. 研究发现In掺杂浓度对薄膜微结构、形貌、表面化学态以及光学特性有灵敏的调节作用. 光电子峰、俄歇峰、俄歇参数的化学位移变化从不同角度揭示了不同含量In掺杂引 起的原子结合情况的变化. XPS结果显示In含量小于8.2 at.%的样品形成了Cu-In-N键. 对In含量为4.6 at.%的样品进行XRD和TEM结构测试, 实验结果肯定了In原子填充到Cu3N的反ReO3结构的体心位置. 并且当In含量增至10.7 at.%时, 薄膜生长的择优取向从之前占主导地位的(001)方向转变为(111)方向. 此外, 随着In含量的增加, 薄膜的R-T曲线从指数形式变为线性. 当In含量为47.9 at.%时, 薄膜趋于大温区恒电阻率材料, 电阻温度系数TCR仅为-6/10000. 光谱测量结果显示In摻杂使得氮化亚铜掺杂薄膜的光学帯隙从间接帯隙变为直接帯隙. 由于Burstein-Moss效应, 帯隙发生蓝移, 从1.02 eV 到2.51 eV, 实现了帯隙连续可调.Thin films of ternary compounds CuxInyN were grown on Si (100) wafers by RF magnetron cosputtering at a low temperature, low power and pure N2 environment. The effect of In incorporation on the structure and physical properties of copper nitride was obvious, which was evaluated by characterizing the film chemical bonding state, structure, electrical and optical properties. In XPS, shift of binding energy, Auger peak and Auger chemical parameters all reflected the chemical changes in the environment. For samples with In content below 8.2 at.%, either the BE increasing of Cu 2p3/2 and In 3d5/2 or the decreasing of N1s could mainly contribute to the Cu-In-N bond formation. For the Cux InyN sample with 4.6% In, indium atoms were consistently confirmed to be incorporated into the body center of Cu3N anti-ReO3 structure as shown by XRD and TEM. The strong (001) preferred orientation of copper nitride crystalline phase was kept predominant in the films until the In content goes up to 10.8 at.%, the texture changed to (111) orientation. The R-T curves of CuxInyN films changed from typical exponential to linear with increasing In. Near constant electrical resistivity in a large temperature range with small TCR of -6/10000 was investigated in the CuxInyN sample with 47.9 at.% In. Moreover, the optical band gap, due to Burstein-Moss effect, was investigated to enhance from 1.02 to 2.51 eV with the In content increasing from 0% to 26.53%, accompanied with band-gap transition from direct to indirect.
-
Keywords:
- ternary nitride /
- thin film /
- optical properties /
- copper nitride
[1] Asano M, Umeda K, Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985
[2] Maruyama T, Morishita T 1996 Appl Phys. Lett. 69 890
[3] Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358
[4] Maya L 1993 Mater. Res. Soc. Symp. Proc. 282 203
[5] Maya L 1993 J. Vac. Sci. Technol. A11 604
[6] Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O, Kurz H 2000 Mikrochim. Acta 133 299
[7] Navio C, Alvarez J, Capitan M J, Camarero J, Miranda R 2009 Appl. Phys. Lett. 94 263112
[8] Navio C, Capitan M J, Alvarez J, Yndurain F, Miranda R 2007 Phys. Rev. B 76 085105
[9] Borsa D M, Grachev S, Presura C, Boerma D O 2002 Appl. Phys. Lett. 80 1823
[10] Maruyama T, Morishita T 1995 J. Appl. Phys. 78 4104
[11] Liu Z Q, Wang W J, Wang T M, Chao S and Zheng S K 1998 Thin Solid Films 325 55
[12] Kim K J, Kim J H, Kang J H 2001 J. Cryst. Growth 222 767
[13] Du Y, Ji A L, Ma L B, Wang Y Q, Cao Z X 2005 J. Cryst. Growth 280 490
[14] Yue G H, Yan P X, Wang J 2005 J. Cryst. Growth 274 464
[15] Pierson J F 2002 Vacuum 66 59
[16] Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y 1999 Thin Solid Films 348 8
[17] Ghosh S, Singha F, Choudharya D, Avasthia D K, Ganesanb V, Shahb P, Gupta A 2001 Surf. Coat. Tech. 142 1034
[18] Mikula M, Búc D, Pinčík E 2001 Acta Physica Slovaca 51 35
[19] Ji A L, Huang R, Du Y, Li C R, Wang Y Q, Cao Z X 2006 J. Cryst. Growth 95 79
[20] Zachwieja U, Jacobs H 1990 J. Less-Common Met. 161 175
[21] Juza R, Rabenau A, Anorg Z 1956 Zeitschrift für anorganische und allgemeine Chemie Chem. 285 212
[22] Wang D Y, Nakamine N, Hayashi Y 1998 J. Vac. Sci. Technol. A16 2084
[23] Borsa D M, Boerma D O 2004 Surf. Sci. 548 95
[24] Moreno-Armenta M G, Martínez-Ruiz A, Takeuchi N 2004 Solid State Sci. rr6 9
[25] Cui X F, Soon A, Phillips A E, Zheng R K, Liu Z W, Delly B, Ringer S P, Stampfl C 2012 J. Magnetism and Magnetic Mater. 324 19
[26] Moreno-Armenta M G, Lopez W, Takeuchi N 2007 Solid State Sci. 9 166
[27] Gulo F, Simon A, Kohler J, Kremer R K 2004 Agew. Chem. Int. Ed. 43 2032
[28] Zachwiecha U, Jacobs H 1991 J. Less-Common Met. 170 185
[29] Blucher J, Bang K 1989 Mater. Sci. Eng. A117 L1
[30] Hayashi Y, Ishikawa T, Shimokawa D 2002 J. Alloys Compd. 330-332 348
[31] Pierson J F, Horwat D 2008 Scr. Mater. 58 568
[32] Gao L, Ji A L, Zhang W B, Cao Z X 2011 J. Cryst. Growth 321 157
[33] Ji A L, Du Y, Lei G, Cao Z X 2010 Phys. Status Solidi A 207 2769
[34] Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev VV, Ivanov S V, Bechstedt F, Furthmller J, Harima H, Mudryi A V, Aderhold J, Semchinova O, Graul J 2002 Phys. Status Solidi B 229 R1
[35] Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[36] Arnaudov B, Paskova T, Paskov P P, Magnusson B, Valcheva E, Monemar B, Lu H, Schaff W J, Amano H, Akasaki I 2004 Phys. Rev. B 69 115216
[37] Gwo S, Wu C L, Shen C H, Chang W H, Hsu T M, Wang J S, Hsu J T 2004 Appl. Phys. Lett. 84 3765
[38] Klochikhin A A, Davydov V Y, Emtsev V V, Sakharov A V, Kapitonov V A, Andreev B A, Lu H, Schaff W J 2005 Phys. Rev. B 71 195207
[39] Ahn H, Shen C H, Wu C L, Gwo S 2005 Appl. Phys. Lett. 86 201905
[40] (in Chinese) [汤晨光, 陈涌海, 王占国 2009 物理学报 58 3416]
[41] (in Chinese) [叶凡, 蔡兴民, 王晓明 2007 物理学报 56 2342]
[42] Ji A L, Du Y, Li C R, Cao Z X 2006 Appl. Phys. Lett. 89 252
[43] Du Y, Huang R, Song R, Ma L B, Chen L, Li C R, Cao Z X 2007 J. Mater. Res. 22 3052
[44] (in Chinese) [吴正龙 2009 现代仪器 1 58]
[45] Mikula M, Ceppan M, Kindernay J, Buc D 1999 Czech. J. Phys. 49 393
[46] Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Hai L, Schaff J W 2002 Phys. Rev. B 66 201403
-
[1] Asano M, Umeda K, Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985
[2] Maruyama T, Morishita T 1996 Appl Phys. Lett. 69 890
[3] Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358
[4] Maya L 1993 Mater. Res. Soc. Symp. Proc. 282 203
[5] Maya L 1993 J. Vac. Sci. Technol. A11 604
[6] Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O, Kurz H 2000 Mikrochim. Acta 133 299
[7] Navio C, Alvarez J, Capitan M J, Camarero J, Miranda R 2009 Appl. Phys. Lett. 94 263112
[8] Navio C, Capitan M J, Alvarez J, Yndurain F, Miranda R 2007 Phys. Rev. B 76 085105
[9] Borsa D M, Grachev S, Presura C, Boerma D O 2002 Appl. Phys. Lett. 80 1823
[10] Maruyama T, Morishita T 1995 J. Appl. Phys. 78 4104
[11] Liu Z Q, Wang W J, Wang T M, Chao S and Zheng S K 1998 Thin Solid Films 325 55
[12] Kim K J, Kim J H, Kang J H 2001 J. Cryst. Growth 222 767
[13] Du Y, Ji A L, Ma L B, Wang Y Q, Cao Z X 2005 J. Cryst. Growth 280 490
[14] Yue G H, Yan P X, Wang J 2005 J. Cryst. Growth 274 464
[15] Pierson J F 2002 Vacuum 66 59
[16] Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y 1999 Thin Solid Films 348 8
[17] Ghosh S, Singha F, Choudharya D, Avasthia D K, Ganesanb V, Shahb P, Gupta A 2001 Surf. Coat. Tech. 142 1034
[18] Mikula M, Búc D, Pinčík E 2001 Acta Physica Slovaca 51 35
[19] Ji A L, Huang R, Du Y, Li C R, Wang Y Q, Cao Z X 2006 J. Cryst. Growth 95 79
[20] Zachwieja U, Jacobs H 1990 J. Less-Common Met. 161 175
[21] Juza R, Rabenau A, Anorg Z 1956 Zeitschrift für anorganische und allgemeine Chemie Chem. 285 212
[22] Wang D Y, Nakamine N, Hayashi Y 1998 J. Vac. Sci. Technol. A16 2084
[23] Borsa D M, Boerma D O 2004 Surf. Sci. 548 95
[24] Moreno-Armenta M G, Martínez-Ruiz A, Takeuchi N 2004 Solid State Sci. rr6 9
[25] Cui X F, Soon A, Phillips A E, Zheng R K, Liu Z W, Delly B, Ringer S P, Stampfl C 2012 J. Magnetism and Magnetic Mater. 324 19
[26] Moreno-Armenta M G, Lopez W, Takeuchi N 2007 Solid State Sci. 9 166
[27] Gulo F, Simon A, Kohler J, Kremer R K 2004 Agew. Chem. Int. Ed. 43 2032
[28] Zachwiecha U, Jacobs H 1991 J. Less-Common Met. 170 185
[29] Blucher J, Bang K 1989 Mater. Sci. Eng. A117 L1
[30] Hayashi Y, Ishikawa T, Shimokawa D 2002 J. Alloys Compd. 330-332 348
[31] Pierson J F, Horwat D 2008 Scr. Mater. 58 568
[32] Gao L, Ji A L, Zhang W B, Cao Z X 2011 J. Cryst. Growth 321 157
[33] Ji A L, Du Y, Lei G, Cao Z X 2010 Phys. Status Solidi A 207 2769
[34] Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev VV, Ivanov S V, Bechstedt F, Furthmller J, Harima H, Mudryi A V, Aderhold J, Semchinova O, Graul J 2002 Phys. Status Solidi B 229 R1
[35] Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[36] Arnaudov B, Paskova T, Paskov P P, Magnusson B, Valcheva E, Monemar B, Lu H, Schaff W J, Amano H, Akasaki I 2004 Phys. Rev. B 69 115216
[37] Gwo S, Wu C L, Shen C H, Chang W H, Hsu T M, Wang J S, Hsu J T 2004 Appl. Phys. Lett. 84 3765
[38] Klochikhin A A, Davydov V Y, Emtsev V V, Sakharov A V, Kapitonov V A, Andreev B A, Lu H, Schaff W J 2005 Phys. Rev. B 71 195207
[39] Ahn H, Shen C H, Wu C L, Gwo S 2005 Appl. Phys. Lett. 86 201905
[40] (in Chinese) [汤晨光, 陈涌海, 王占国 2009 物理学报 58 3416]
[41] (in Chinese) [叶凡, 蔡兴民, 王晓明 2007 物理学报 56 2342]
[42] Ji A L, Du Y, Li C R, Cao Z X 2006 Appl. Phys. Lett. 89 252
[43] Du Y, Huang R, Song R, Ma L B, Chen L, Li C R, Cao Z X 2007 J. Mater. Res. 22 3052
[44] (in Chinese) [吴正龙 2009 现代仪器 1 58]
[45] Mikula M, Ceppan M, Kindernay J, Buc D 1999 Czech. J. Phys. 49 393
[46] Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Hai L, Schaff J W 2002 Phys. Rev. B 66 201403
计量
- 文章访问数: 6599
- PDF下载量: 474
- 被引次数: 0