搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In掺杂氮化亚铜薄膜的电学、光学和结构特性研究

杜允 鲁年鹏 杨虎 叶满萍 李超荣

引用本文:
Citation:

In掺杂氮化亚铜薄膜的电学、光学和结构特性研究

杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣

Electrical, optical properties and structure characterization of In-doped copper nitride thin film

Du Yun, Lu Nian-Peng, Yang Hu, Ye Man-Ping, Li Chao-Rong
PDF
导出引用
  • 采用射频磁控溅射方法, 在低功率和低温条件下利用纯氮气作为反应溅射气体制 备出不同In含量的三元氮化物CuxInyN薄膜. 研究发现In掺杂浓度对薄膜微结构、形貌、表面化学态以及光学特性有灵敏的调节作用. 光电子峰、俄歇峰、俄歇参数的化学位移变化从不同角度揭示了不同含量In掺杂引 起的原子结合情况的变化. XPS结果显示In含量小于8.2 at.%的样品形成了Cu-In-N键. 对In含量为4.6 at.%的样品进行XRD和TEM结构测试, 实验结果肯定了In原子填充到Cu3N的反ReO3结构的体心位置. 并且当In含量增至10.7 at.%时, 薄膜生长的择优取向从之前占主导地位的(001)方向转变为(111)方向. 此外, 随着In含量的增加, 薄膜的R-T曲线从指数形式变为线性. 当In含量为47.9 at.%时, 薄膜趋于大温区恒电阻率材料, 电阻温度系数TCR仅为-6/10000. 光谱测量结果显示In摻杂使得氮化亚铜掺杂薄膜的光学帯隙从间接帯隙变为直接帯隙. 由于Burstein-Moss效应, 帯隙发生蓝移, 从1.02 eV 到2.51 eV, 实现了帯隙连续可调.
    Thin films of ternary compounds CuxInyN were grown on Si (100) wafers by RF magnetron cosputtering at a low temperature, low power and pure N2 environment. The effect of In incorporation on the structure and physical properties of copper nitride was obvious, which was evaluated by characterizing the film chemical bonding state, structure, electrical and optical properties. In XPS, shift of binding energy, Auger peak and Auger chemical parameters all reflected the chemical changes in the environment. For samples with In content below 8.2 at.%, either the BE increasing of Cu 2p3/2 and In 3d5/2 or the decreasing of N1s could mainly contribute to the Cu-In-N bond formation. For the Cux InyN sample with 4.6% In, indium atoms were consistently confirmed to be incorporated into the body center of Cu3N anti-ReO3 structure as shown by XRD and TEM. The strong (001) preferred orientation of copper nitride crystalline phase was kept predominant in the films until the In content goes up to 10.8 at.%, the texture changed to (111) orientation. The R-T curves of CuxInyN films changed from typical exponential to linear with increasing In. Near constant electrical resistivity in a large temperature range with small TCR of -6/10000 was investigated in the CuxInyN sample with 47.9 at.% In. Moreover, the optical band gap, due to Burstein-Moss effect, was investigated to enhance from 1.02 to 2.51 eV with the In content increasing from 0% to 26.53%, accompanied with band-gap transition from direct to indirect.
    • 基金项目: 国家自然科学基金(批准号: 10904165, 51172272, 21103155)和国家重点基础研究发展计划(973计划) (批准号: 2012CB933002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904165, 51172272, 21103155), and the National Basic Research Program of China (Grant No. 2012CB933002).
    [1]

    Asano M, Umeda K, Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985

    [2]

    Maruyama T, Morishita T 1996 Appl Phys. Lett. 69 890

    [3]

    Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358

    [4]

    Maya L 1993 Mater. Res. Soc. Symp. Proc. 282 203

    [5]

    Maya L 1993 J. Vac. Sci. Technol. A11 604

    [6]

    Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O, Kurz H 2000 Mikrochim. Acta 133 299

    [7]

    Navio C, Alvarez J, Capitan M J, Camarero J, Miranda R 2009 Appl. Phys. Lett. 94 263112

    [8]

    Navio C, Capitan M J, Alvarez J, Yndurain F, Miranda R 2007 Phys. Rev. B 76 085105

    [9]

    Borsa D M, Grachev S, Presura C, Boerma D O 2002 Appl. Phys. Lett. 80 1823

    [10]

    Maruyama T, Morishita T 1995 J. Appl. Phys. 78 4104

    [11]

    Liu Z Q, Wang W J, Wang T M, Chao S and Zheng S K 1998 Thin Solid Films 325 55

    [12]

    Kim K J, Kim J H, Kang J H 2001 J. Cryst. Growth 222 767

    [13]

    Du Y, Ji A L, Ma L B, Wang Y Q, Cao Z X 2005 J. Cryst. Growth 280 490

    [14]

    Yue G H, Yan P X, Wang J 2005 J. Cryst. Growth 274 464

    [15]

    Pierson J F 2002 Vacuum 66 59

    [16]

    Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y 1999 Thin Solid Films 348 8

    [17]

    Ghosh S, Singha F, Choudharya D, Avasthia D K, Ganesanb V, Shahb P, Gupta A 2001 Surf. Coat. Tech. 142 1034

    [18]

    Mikula M, Búc D, Pinčík E 2001 Acta Physica Slovaca 51 35

    [19]

    Ji A L, Huang R, Du Y, Li C R, Wang Y Q, Cao Z X 2006 J. Cryst. Growth 95 79

    [20]

    Zachwieja U, Jacobs H 1990 J. Less-Common Met. 161 175

    [21]

    Juza R, Rabenau A, Anorg Z 1956 Zeitschrift für anorganische und allgemeine Chemie Chem. 285 212

    [22]

    Wang D Y, Nakamine N, Hayashi Y 1998 J. Vac. Sci. Technol. A16 2084

    [23]

    Borsa D M, Boerma D O 2004 Surf. Sci. 548 95

    [24]

    Moreno-Armenta M G, Martínez-Ruiz A, Takeuchi N 2004 Solid State Sci. rr6 9

    [25]

    Cui X F, Soon A, Phillips A E, Zheng R K, Liu Z W, Delly B, Ringer S P, Stampfl C 2012 J. Magnetism and Magnetic Mater. 324 19

    [26]

    Moreno-Armenta M G, Lopez W, Takeuchi N 2007 Solid State Sci. 9 166

    [27]

    Gulo F, Simon A, Kohler J, Kremer R K 2004 Agew. Chem. Int. Ed. 43 2032

    [28]

    Zachwiecha U, Jacobs H 1991 J. Less-Common Met. 170 185

    [29]

    Blucher J, Bang K 1989 Mater. Sci. Eng. A117 L1

    [30]

    Hayashi Y, Ishikawa T, Shimokawa D 2002 J. Alloys Compd. 330-332 348

    [31]

    Pierson J F, Horwat D 2008 Scr. Mater. 58 568

    [32]

    Gao L, Ji A L, Zhang W B, Cao Z X 2011 J. Cryst. Growth 321 157

    [33]

    Ji A L, Du Y, Lei G, Cao Z X 2010 Phys. Status Solidi A 207 2769

    [34]

    Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev VV, Ivanov S V, Bechstedt F, Furthmller J, Harima H, Mudryi A V, Aderhold J, Semchinova O, Graul J 2002 Phys. Status Solidi B 229 R1

    [35]

    Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967

    [36]

    Arnaudov B, Paskova T, Paskov P P, Magnusson B, Valcheva E, Monemar B, Lu H, Schaff W J, Amano H, Akasaki I 2004 Phys. Rev. B 69 115216

    [37]

    Gwo S, Wu C L, Shen C H, Chang W H, Hsu T M, Wang J S, Hsu J T 2004 Appl. Phys. Lett. 84 3765

    [38]

    Klochikhin A A, Davydov V Y, Emtsev V V, Sakharov A V, Kapitonov V A, Andreev B A, Lu H, Schaff W J 2005 Phys. Rev. B 71 195207

    [39]

    Ahn H, Shen C H, Wu C L, Gwo S 2005 Appl. Phys. Lett. 86 201905

    [40]

    (in Chinese) [汤晨光, 陈涌海, 王占国 2009 物理学报 58 3416]

    [41]

    (in Chinese) [叶凡, 蔡兴民, 王晓明 2007 物理学报 56 2342]

    [42]

    Ji A L, Du Y, Li C R, Cao Z X 2006 Appl. Phys. Lett. 89 252

    [43]

    Du Y, Huang R, Song R, Ma L B, Chen L, Li C R, Cao Z X 2007 J. Mater. Res. 22 3052

    [44]

    (in Chinese) [吴正龙 2009 现代仪器 1 58]

    [45]

    Mikula M, Ceppan M, Kindernay J, Buc D 1999 Czech. J. Phys. 49 393

    [46]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Hai L, Schaff J W 2002 Phys. Rev. B 66 201403

  • [1]

    Asano M, Umeda K, Tasaki A 1990 Jpn. J. Appl. Phys. 29 1985

    [2]

    Maruyama T, Morishita T 1996 Appl Phys. Lett. 69 890

    [3]

    Nosaka T, Yoshitake M, Okamoto A, Ogawa S and Nakayama Y 2001 Appl. Surf. Sci. 169 358

    [4]

    Maya L 1993 Mater. Res. Soc. Symp. Proc. 282 203

    [5]

    Maya L 1993 J. Vac. Sci. Technol. A11 604

    [6]

    Cremer R, Witthaut M, Neuschutz D, Trappe C, Laurenzis M, Winkle O, Kurz H 2000 Mikrochim. Acta 133 299

    [7]

    Navio C, Alvarez J, Capitan M J, Camarero J, Miranda R 2009 Appl. Phys. Lett. 94 263112

    [8]

    Navio C, Capitan M J, Alvarez J, Yndurain F, Miranda R 2007 Phys. Rev. B 76 085105

    [9]

    Borsa D M, Grachev S, Presura C, Boerma D O 2002 Appl. Phys. Lett. 80 1823

    [10]

    Maruyama T, Morishita T 1995 J. Appl. Phys. 78 4104

    [11]

    Liu Z Q, Wang W J, Wang T M, Chao S and Zheng S K 1998 Thin Solid Films 325 55

    [12]

    Kim K J, Kim J H, Kang J H 2001 J. Cryst. Growth 222 767

    [13]

    Du Y, Ji A L, Ma L B, Wang Y Q, Cao Z X 2005 J. Cryst. Growth 280 490

    [14]

    Yue G H, Yan P X, Wang J 2005 J. Cryst. Growth 274 464

    [15]

    Pierson J F 2002 Vacuum 66 59

    [16]

    Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y 1999 Thin Solid Films 348 8

    [17]

    Ghosh S, Singha F, Choudharya D, Avasthia D K, Ganesanb V, Shahb P, Gupta A 2001 Surf. Coat. Tech. 142 1034

    [18]

    Mikula M, Búc D, Pinčík E 2001 Acta Physica Slovaca 51 35

    [19]

    Ji A L, Huang R, Du Y, Li C R, Wang Y Q, Cao Z X 2006 J. Cryst. Growth 95 79

    [20]

    Zachwieja U, Jacobs H 1990 J. Less-Common Met. 161 175

    [21]

    Juza R, Rabenau A, Anorg Z 1956 Zeitschrift für anorganische und allgemeine Chemie Chem. 285 212

    [22]

    Wang D Y, Nakamine N, Hayashi Y 1998 J. Vac. Sci. Technol. A16 2084

    [23]

    Borsa D M, Boerma D O 2004 Surf. Sci. 548 95

    [24]

    Moreno-Armenta M G, Martínez-Ruiz A, Takeuchi N 2004 Solid State Sci. rr6 9

    [25]

    Cui X F, Soon A, Phillips A E, Zheng R K, Liu Z W, Delly B, Ringer S P, Stampfl C 2012 J. Magnetism and Magnetic Mater. 324 19

    [26]

    Moreno-Armenta M G, Lopez W, Takeuchi N 2007 Solid State Sci. 9 166

    [27]

    Gulo F, Simon A, Kohler J, Kremer R K 2004 Agew. Chem. Int. Ed. 43 2032

    [28]

    Zachwiecha U, Jacobs H 1991 J. Less-Common Met. 170 185

    [29]

    Blucher J, Bang K 1989 Mater. Sci. Eng. A117 L1

    [30]

    Hayashi Y, Ishikawa T, Shimokawa D 2002 J. Alloys Compd. 330-332 348

    [31]

    Pierson J F, Horwat D 2008 Scr. Mater. 58 568

    [32]

    Gao L, Ji A L, Zhang W B, Cao Z X 2011 J. Cryst. Growth 321 157

    [33]

    Ji A L, Du Y, Lei G, Cao Z X 2010 Phys. Status Solidi A 207 2769

    [34]

    Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev VV, Ivanov S V, Bechstedt F, Furthmller J, Harima H, Mudryi A V, Aderhold J, Semchinova O, Graul J 2002 Phys. Status Solidi B 229 R1

    [35]

    Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967

    [36]

    Arnaudov B, Paskova T, Paskov P P, Magnusson B, Valcheva E, Monemar B, Lu H, Schaff W J, Amano H, Akasaki I 2004 Phys. Rev. B 69 115216

    [37]

    Gwo S, Wu C L, Shen C H, Chang W H, Hsu T M, Wang J S, Hsu J T 2004 Appl. Phys. Lett. 84 3765

    [38]

    Klochikhin A A, Davydov V Y, Emtsev V V, Sakharov A V, Kapitonov V A, Andreev B A, Lu H, Schaff W J 2005 Phys. Rev. B 71 195207

    [39]

    Ahn H, Shen C H, Wu C L, Gwo S 2005 Appl. Phys. Lett. 86 201905

    [40]

    (in Chinese) [汤晨光, 陈涌海, 王占国 2009 物理学报 58 3416]

    [41]

    (in Chinese) [叶凡, 蔡兴民, 王晓明 2007 物理学报 56 2342]

    [42]

    Ji A L, Du Y, Li C R, Cao Z X 2006 Appl. Phys. Lett. 89 252

    [43]

    Du Y, Huang R, Song R, Ma L B, Chen L, Li C R, Cao Z X 2007 J. Mater. Res. 22 3052

    [44]

    (in Chinese) [吴正龙 2009 现代仪器 1 58]

    [45]

    Mikula M, Ceppan M, Kindernay J, Buc D 1999 Czech. J. Phys. 49 393

    [46]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager J W, Haller E E, Hai L, Schaff J W 2002 Phys. Rev. B 66 201403

  • [1] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [2] 孙景阳, 王东明, 吕业刚, 王苗, 汪伊曼, 沈祥, 王国祥, 戴世勋. 应用于相变存储器的Cu-Ge3Sb2Te5薄膜的结构及相变特性研究. 物理学报, 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [3] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究. 物理学报, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [4] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [5] 汪昌州, 朱伟玲, 翟继卫, 赖天树. Ga30Sb70/Sb80Te20纳米复合多层薄膜的相变特性研究. 物理学报, 2013, 62(3): 036402. doi: 10.7498/aps.62.036402
    [6] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究. 物理学报, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [7] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [8] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [9] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [10] 屈媛, 班士良. 纤锌矿氮化物量子阱中光学声子模的三元混晶效应. 物理学报, 2010, 59(7): 4863-4873. doi: 10.7498/aps.59.4863
    [11] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [12] 廖国进, 闫绍峰, 巴德纯. 铈掺杂氧化铝薄膜的蓝紫色发光特性. 物理学报, 2008, 57(11): 7327-7332. doi: 10.7498/aps.57.7327
    [13] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [14] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [15] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究. 物理学报, 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [16] 罗向东, 孙炳华, 徐仲英. GaNxAs1-x(x<0.01)中合金态的光学特性. 物理学报, 2005, 54(5): 2385-2388. doi: 10.7498/aps.54.2385
    [17] 许海军, 富笑男, 孙新瑞, 李新建. 硅纳米孔柱阵列的结构和光学特性研究. 物理学报, 2005, 54(5): 2352-2357. doi: 10.7498/aps.54.2352
    [18] 齐红基, 易 葵, 贺洪波, 邵建达. 溅射粒子能量对金属Mo薄膜表面特性的影响. 物理学报, 2004, 53(12): 4398-4404. doi: 10.7498/aps.53.4398
    [19] 张谷令, 王久丽, 杨武保, 范松华, 刘赤子, 杨思泽. 内表面栅极等离子体源离子注入TiN薄膜及其特性研究. 物理学报, 2003, 52(9): 2213-2218. doi: 10.7498/aps.52.2213
    [20] 金进生, 叶高翔, 钱昌吉, 翟国庆, 叶全林, 焦正宽. 金原子在熔融玻璃表面的凝聚特性. 物理学报, 2001, 50(3): 544-549. doi: 10.7498/aps.50.544
计量
  • 文章访问数:  6599
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-09
  • 修回日期:  2013-04-11
  • 刊出日期:  2013-06-05

/

返回文章
返回