搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高气压均匀直流辉光放电等离子体的光学特性

王建龙 丁芳 朱晓东

引用本文:
Citation:

高气压均匀直流辉光放电等离子体的光学特性

王建龙, 丁芳, 朱晓东

Optical properties of direct current glow discharge plasmas at high pressures

Wang Jian-Long, Ding Fang, Zhu Xiao-Dong
PDF
导出引用
  • 在高气压(大于100 Torr, 1 Torr=1.33322×102 Pa)平板位形的均匀直流辉光放电中, 一定条件下观察到平行排列的明暗相间的等离子体辉纹. 结合等离子体的光发射谱诊断, 研究了气体组分对等离子体光学特性的影响. 研究发现, 随着甲烷浓度的增加, 辉纹间距减小, 相应的电子激发温度降低. 当甲烷浓度增加时, 等离子体中低电离能的粒种增加, 粒子平均电离能减小, 这种情况下, 电子被电场加速较短的距离所获得的能量就可以激发粒子, 产生可见的光发射, 表现为辉纹间距缩短. 随着氩气的引入, 能够观察到明显的辉纹, 且增大氩气含量, 辉纹间距增加, 这与氩的较高电离能有关, 而相应的电子激发温度增加. 研究结果表明, 随着工作气体的改变, 等离子体辉纹间距呈现出一种对电子温度的响应.
    In this work, the parallel bright and dark plasma striations are observed in direct correct glow discharge plasmas at high pressures (>100 Torr, 1 Torr=1.33322×102 Pa), and the effect of working gas on the plasma optical property is studied by combining the measurements of optical emission spectra. With the increase of the methane concentration, the length of striations decreases and the corresponding electron excitation temperature reduces. As the concentration of methane increases, the species with the low ionization energy increases, and the average ionization energy of the species decreases. In this case, the electron accelerated in a smaller distance can obtain enough energy to excite the gas species and produce visible light emission, and thus the length of plasma striations becomes shorter. With the introduction of argon, the plasma striations appear clearly. The length of striations increases with the increase of argon content, which is also correlated with the higher ionization energy of argon, while the corresponding electron excitation temperature rises. The length of plasma striations shows a response to the electron temperature as working gas changes.
    • 基金项目: 国家自然科学基金(批准号: 11075158, 11375192)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075158, 11375192).
    [1]

    Lee J K, Eun K Y, Baik Y J, Cheon H J, Rhyu J W, Shin T J, Park J W 2002 Diamond Relat. Mater. 11 463

    [2]

    Ding F, Zhu X D, Zhan R J, Ni T L, Ke B, Zhou H Y, Chen M D, Wen X H 2009 Appl. Phys. Lett. 95 121501

    [3]

    Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189

    [4]

    Lee D A, Garscadden A 1972 Phys. Fluids 15 1826

    [5]

    Laz F, Yang S S, Kim H C, Lee J K 2005 J. Appl. Phys. 98 043302

    [6]

    He S J, Ha J, Guo S Q, Liu Z Q, Dong L F 2014 Spectrosc. Spect. Anal. 34 39 (in Chinese) [何寿杰, 哈静, 郭树青, 刘志强, 董丽芳 2014 光谱学与光谱分析 34 39]

    [7]

    Zhao X F, He F, Ouyang J T 2012 Phys. Lett. A 376 2057

    [8]

    Robert R A, Vladimir I K 2005 IEEE Trans. Plasma Sci. 33 354

    [9]

    Rajneesh K, Sanjay V K, Dhiraj B 2007 Phys. Plasmas 14 122101

    [10]

    Vladimir I K 2006 J. Phys. D: Appl. Phys. 39 487

    [11]

    David S, Bakhtier F, Alexander G 2008 Plasma Sources Sci. Technol. 17 025013

    [12]

    Yuri B G, Vladimir I K, Vladimir O 2013 Phys. Plasmas 20 101602

    [13]

    Zheng S J, Ding F, Xie X H, Tang Z L, Zhang Y C, Li H, Yang K, Zhu X D 2013 Acta Phys. Sin. 16 165204 (in Chinese) [郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东 2013 物理学报 16 165204]

    [14]

    Liberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp535-543 (in Chinese) [力伯曼 M A, 里登博格 A J 著(蒲以康 译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)第535–543页]

    [15]

    Sukhinin G I, Fedoseev A V 2006 High Temp. 44 157

  • [1]

    Lee J K, Eun K Y, Baik Y J, Cheon H J, Rhyu J W, Shin T J, Park J W 2002 Diamond Relat. Mater. 11 463

    [2]

    Ding F, Zhu X D, Zhan R J, Ni T L, Ke B, Zhou H Y, Chen M D, Wen X H 2009 Appl. Phys. Lett. 95 121501

    [3]

    Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189

    [4]

    Lee D A, Garscadden A 1972 Phys. Fluids 15 1826

    [5]

    Laz F, Yang S S, Kim H C, Lee J K 2005 J. Appl. Phys. 98 043302

    [6]

    He S J, Ha J, Guo S Q, Liu Z Q, Dong L F 2014 Spectrosc. Spect. Anal. 34 39 (in Chinese) [何寿杰, 哈静, 郭树青, 刘志强, 董丽芳 2014 光谱学与光谱分析 34 39]

    [7]

    Zhao X F, He F, Ouyang J T 2012 Phys. Lett. A 376 2057

    [8]

    Robert R A, Vladimir I K 2005 IEEE Trans. Plasma Sci. 33 354

    [9]

    Rajneesh K, Sanjay V K, Dhiraj B 2007 Phys. Plasmas 14 122101

    [10]

    Vladimir I K 2006 J. Phys. D: Appl. Phys. 39 487

    [11]

    David S, Bakhtier F, Alexander G 2008 Plasma Sources Sci. Technol. 17 025013

    [12]

    Yuri B G, Vladimir I K, Vladimir O 2013 Phys. Plasmas 20 101602

    [13]

    Zheng S J, Ding F, Xie X H, Tang Z L, Zhang Y C, Li H, Yang K, Zhu X D 2013 Acta Phys. Sin. 16 165204 (in Chinese) [郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东 2013 物理学报 16 165204]

    [14]

    Liberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp535-543 (in Chinese) [力伯曼 M A, 里登博格 A J 著(蒲以康 译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)第535–543页]

    [15]

    Sukhinin G I, Fedoseev A V 2006 High Temp. 44 157

  • [1] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [2] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [3] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [4] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响. 物理学报, 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [5] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究. 物理学报, 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [6] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [7] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [8] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析. 物理学报, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [9] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响. 物理学报, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [10] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [11] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [12] 王林, 夏智勋, 罗振兵, 周岩, 张宇. 两电极等离子体合成射流激励器工作特性研究. 物理学报, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [13] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究. 物理学报, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [14] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 等离子体环境下孤立导体表面充电时域特性研究. 物理学报, 2013, 62(14): 149401. doi: 10.7498/aps.62.149401
    [15] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究. 物理学报, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [16] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究. 物理学报, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [17] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [18] 谢鸿全, 刘濮鲲, 李承跃, 鄢 扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析. 物理学报, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [19] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断. 物理学报, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程. 物理学报, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  6201
  • PDF下载量:  469
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-08-28
  • 刊出日期:  2015-02-05

/

返回文章
返回