搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于光学放大的掺铒氧化碲脊型波导研究

杨家琦 龙浙 王威 牛磊 王荣平

引用本文:
Citation:

用于光学放大的掺铒氧化碲脊型波导研究

杨家琦, 龙浙, 王威, 牛磊, 王荣平

Research on Erbium-Doped Tellurium Oxide Ridge Waveguides for Optical Amplification

YANG Jiaqi, LONG Zhe, WANG Wei, NIU Lei, WANG Rongping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 利用射频磁控溅射法制备了掺铒TeO2薄膜,探究了氧化铒靶溅射功率、Ar/O2气体比例以及退火温度对薄膜发光特性的影响。实验结果表明,在氧化铒靶溅射功率为20 W、Ar/O2气体流量比为5:1、退火温度250℃时,薄膜呈现出良好的光致发光性能。针对直接刻蚀掺铒薄膜层易引发表面粗糙等问题,设计并采用紫外光刻和等离子体刻蚀工艺制备了双层波导结构。使用截断法测得0.5 cm长的掺铒TeO2波导在1310 nm波长处的最低光学损耗为0.607 dB/cm,放大性能测量表明在1545 nm波段,波导具有7.2 dB/cm的光学内增益。这些实验结果表明,掺铒TeO2波导在平面集成波导放大器领域极具应用潜力。
    The rapid advancement of information technology has driven an exponential demand for high-speed, large-capacity data transmission and processing. Traditional electronic communication systems face inherent limitations such as bandwidth constraints and electromagnetic interference, prompting a paradigm shift toward photonic technologies. Integrated optical waveguides, as core components of on-chip photonic systems, enable efficient light confinement and manipulation at microscale dimensions, offering advantages in miniaturization, low power consumption, and high compatibility with existing optical communication infrastructure. Among these, erbium-doped waveguide amplifier (EDWA) have emerged as critical active devices for signal amplification in the 1550 nm communication band, leveraging the radiative transitions of Er3+ ions to achieve optical gain. Numerous studies have shown that, the fluorescence performance of Er3+ is closely related to the factors like doping method, preparation and annealing conditions. Besides, the performance of such amplifiers heavily relies on the choice of host materials, which must exhibit low optical loss, high rare-earth ion solubility, and compatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes. Tellurium dioxide (TeO2), with its high refractive index (2.1–2.4), broad transparency range (0.33–5 μm), exceptional chemical stability, and low phonon energy, has shown significant promise as a superior alternative to conventional materials like silicon nitride (Si3N4) or aluminum oxide (Al2O3). This study focuses on the development of erbium-doped TeO2 (Er:TeO2) ridge waveguides for on-chip optical amplification. The Er:TeO2 thin films were deposited via radio frequency (RF) magnetron sputtering using high-purity Te and Er targets. Key deposition parameters, including Er2O3 target sputtering power (10-30 W), Ar/O₂ gas flow ratio (1:1 to 5:1), and post-deposition annealing conditions (200-300 ℃ under oxygen atmosphere), were systematically optimized to enhance photoluminescence properties. Scanning electron microscopy (SEM) and fluorescence spectroscopy were employed to evaluate film morphology and emission characteristics. A bilayer waveguide structure was designed to mitigate surface roughness induced by direct etching of the Er-doped layer. The lower Er:TeO2 active layer (500 nm thickness) and upper undoped TeO2 cladding layer (150 nm thickness) were patterned using ultraviolet lithography and plasma etching (O2/Ar/CHF3 gas mixture), achieving a ridge width of 2 μm. Optical confinement and mode field distribution were simulated using finite-difference eigenmode (FDE) analysis, confirming effective light-matter overlap within the Er-doped region. Experimental results revealed that the optimal Er:TeO2 film, deposited at an Er target power of 20 W, Ar/O2 flow ratio of 5:1, and annealed at 250 ℃ for 10 hours, exhibited a photoluminescence intensity of 3.5×10⁶ photon counts at 1545 nm-nearly two orders of magnitude higher than non-annealed samples. Oxygen annealing effectively activated Er3+ ions while passivating oxygen vacancies, critical for minimizing non-radiative recombination. Excessive Er doping (30 W sputtering power) led to ion clustering and fluorescence quenching, underscoring the importance of controlled dopant concentration. Surface morphology analysis via SEM and optical microscopy confirmed smooth, crack-free films with minimal particulate contamination, essential for low-loss waveguide fabrication. Waveguide performance was characterized using the cut-back method at 1310 nm, yielding a propagation loss of 0.607 dB/cm for a 0.5 cm-long device. However, coupling losses of 6.34 dB/facet were observed due to rough end-faces from mechanical dicing, highlighting the need for post-fabrication polishing or anti-reflective coatings. Amplification tests at 1545 nm under 980 nm pumping demonstrated an internal gain of 7.2 dB/cm at a pump power of 88.45 mW, with gain saturation observed beyond 90 mW. The broadband emission spectrum (80 nm full-width at half-maximum) further validated Er:TeO2’s potential for wideband amplification in the C-bands. In conclusion, this study has elucidated the advantages of erbium-doped tellurium oxide (Er:TeO2) ridge waveguides as on-chip optical amplifiers, optimized their deposition and annealing protocols, and designed a bilayer waveguide structure. The achieved low propagation loss and significant internal gain underscore the material’s compatibility with photonic integrated circuits (PICs). Future efforts will focus on refining waveguide end-face quality, enhancing pump efficiency, and scaling device lengths to realize practical net gain for telecommunications and quantum photonics applications. These advancements position Er:TeO2 as a cornerstone material for next-generation compact and high-performance photonic systems.
  • [1]

    Mizuno T, Miyamoto Y 2017Opt. Fiber Technol. 35 108

    [2]

    Xiao P, Wang B 2022Opt. Commun. 508 127709

    [3]

    Bradley J D B, Pollnau M 2010Laser Photonics Rev. 5 368

    [4]

    Kish F, Lal V, Evans P, Corzine S W, Ziari M, Butrie T, Reffle M, Tsai H-S, Dentai A, Pleumeekers J, Missey M, Fisher M, Murthy S, Salvatore R, Samra P, Demars S, Kim N, James A, Hosseini A, Studenkov P, Lauermann M, Going R, Lu M, Zhang J, Tang J, Bostak J, Vallaitis T, Kuntz M, Pavinski D, Karanicolas A, Behnia B, Engel D, Khayam O, Modi N, Chitgarha M R, Mertz P, Ko W, Maher R, Osenbach J, Rahn J T, Sun H, Wu K-T, Mitchell M, Welch D 2018IEEE J. Sel. Top. Quantum Electron. 24 1

    [5]

    Chen Z P, Shu H W, Wang X J 2017Sci. China:Phys., Mech. Astron. 47 5(陈子萍,舒浩文,王兴军2017中国科学:物理学力学天文学47 5)

    [6]

    Yan K, Vu K, Madden S 2015Opt. Lett. 40 796

    [7]

    Yan K, Vu K, Wang R, Madden S 2016Opt. Express 24 23304

    [8]

    Demirtas M, Ay F 2020IEEE J. Sel. Top. Quantum Electron. 26 1

    [9]

    Yang J, van Dalfsen K, Wörhoff K, Ay F, Pollnau M 2010Applied Physics B 101 119

    [10]

    Zhang Z, Liu R, Wang W, Yan K, Yang Z, Song M, Wu D, Xu P, Wang X, Wang R 2023Opt. Lett. 48 5799

    [11]

    Rönn J, Zhang W, Autere A, Leroux X, Pakarinen L, Alonso-Ramos C, Säynätjoki A, Lipsanen H, Vivien L, Cassan E, Sun Z 2019Nat. Commun. 10432

    [12]

    Hu J, Tarasov V, Agarwal A, Kimerling K 2007Opt. Express 15 2307

    [13]

    Pelusi M D, Luan F, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Eggleton B J 2010IEEE Photonics Technol. Lett. 22 3

    [14]

    Vu A T, Vu A N, Grunwald T, Bergs T 2020Journal of the American Ceramic Society 103 2791

    [15]

    Nayak R, Gupta V, Dawar A L, Sreenivas K 2003Thin Solid Films 445 118

    [16]

    Pietralunga S M, Lanata M, Ferè M, Piccinin D, Cusmai G, Torregiani M, Martinelli M 2008Opt. Express 16 21662

    [17]

    Frankis H C, Kiani K M, Su D, Mateman R, Leinse A, Bradley J D B 2018Opt. Lett. 44 118

    [18]

    Madden S J,Vu K T 2009Opt. Express 17 17645

    [19]

    Foster M A, Moll K D, Gaeta A L 2004Opt. Express 12 2880

    [20]

    Wu J, Yang Z, Wei T X, Zhang Z, Wang W, Liu R X, Wang R P 2023Applied Laser 43 127(邬健,杨振,魏腾秀,张政,王威,刘瑞雪,王荣平2023应用激光43 127)

    [21]

    Liu R, Zhang Z, Yang Z, Wang W, Yan K, Song M, Wang R 2023Applied Physics Letters 123 151109

    [22]

    Liu R X, Zhang Z, Wu J, Yang Z, Wang W, Wei T X, Wang R P 2023Acta Photonica Sin. 52 1(刘瑞雪,张政,邬健,杨振,魏腾秀,王荣平2023光子学报52 1)

    [23]

    Wang W, Wei T, Zhang Z, Yang Z, Liu R, Yan K, Cai D, Yang X, Xu P, Wang X, Wang R 2023Opt. Lett. 485715

    [24]

    Saikumar A K, Nehate S D, Sundaram K B 2019ECS J. Solid State Sci. Technol. 8 3064

    [25]

    Liang H, Chen Y, Xia X, Zhang C, Shen R, Liu Y, Luo Y, Du G 2015Mater. Sci. Semicond. Process. 39 582

    [26]

    Wei T X, Yang Z, Wu J, Sun Y H, Wang R P 2022Acta Photonica Sin. 51 117(魏腾秀,杨振,邬健,孙元欢,王荣平2022光子学报51 117)

    [27]

    Lu R, Link S, Zhang S, Breen M, Gong S 2019J. Microelectromech. Syst. 28 569

  • [1] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.72.20221902
    [2] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, doi: 10.7498/aps.71.20211585
    [3] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.71.20211324
    [4] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, doi: 10.7498/aps.64.108201
    [5] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, doi: 10.7498/aps.64.045206
    [6] 甘平, 辜敏, 卿胜兰, 鲜晓东. Te/TeO2-SiO2复合薄膜的吸收和非线性光学特性研究. 物理学报, doi: 10.7498/aps.62.078101
    [7] 汪昌州, 朱伟玲, 翟继卫, 赖天树. Ga30Sb70/Sb80Te20纳米复合多层薄膜的相变特性研究. 物理学报, doi: 10.7498/aps.62.036402
    [8] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, doi: 10.7498/aps.62.094201
    [9] 杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣. In掺杂氮化亚铜薄膜的电学、光学和结构特性研究. 物理学报, doi: 10.7498/aps.62.118104
    [10] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究. 物理学报, doi: 10.7498/aps.61.217301
    [11] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, doi: 10.7498/aps.61.056801
    [12] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, doi: 10.7498/aps.60.036804
    [13] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, doi: 10.7498/aps.60.047803
    [14] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, doi: 10.7498/aps.59.2498
    [15] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, doi: 10.7498/aps.58.2488
    [16] 宋 峰, 苏瑞渊, 傅 强, 覃 斌, 田建国, 张光寅. 高浓度镱铒共掺磷酸盐光纤放大器增益特性. 物理学报, doi: 10.7498/aps.54.5228
    [17] 宋 琦, 宋昌烈, 李成仁, 李淑凤, 李建勇. 纵向非均匀掺铒的光波导放大器特性数值模拟研究. 物理学报, doi: 10.7498/aps.54.1624
    [18] 李 涛, 张勤远, 冯洲明, 赵 纯, 姜中宏. 碱金属和碱土金属氟化物对掺Er3+氟磷酸盐玻璃光谱性质的影响. 物理学报, doi: 10.7498/aps.54.4926
    [19] 罗向东, 孙炳华, 徐仲英. GaNxAs1-x(x<0.01)中合金态的光学特性. 物理学报, doi: 10.7498/aps.54.2385
    [20] 许海军, 富笑男, 孙新瑞, 李新建. 硅纳米孔柱阵列的结构和光学特性研究. 物理学报, doi: 10.7498/aps.54.2352
计量
  • 文章访问数:  38
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-18

/

返回文章
返回