搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于光学放大的掺铒氧化碲脊型波导研究

杨家琦 龙浙 王威 牛磊 王荣平

引用本文:
Citation:

用于光学放大的掺铒氧化碲脊型波导研究

杨家琦, 龙浙, 王威, 牛磊, 王荣平

Erbium-doped tellurium oxide ridge waveguides for optical amplification

YANG Jiaqi, LONG Zhe, WANG Wei, NIU Lei, WANG Rongping
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用射频磁控溅射法制备了掺铒TeO2薄膜, 探究了氧化铒靶溅射功率、Ar/O2气体比例以及退火温度对薄膜发光特性的影响. 实验结果表明, 在氧化铒靶溅射功率为20 W、Ar/O2气体流量比为5∶1、退火温度250 ℃时, 薄膜呈现出良好的光致发光性能. 针对直接刻蚀掺铒薄膜层易引发表面粗糙等问题, 设计并采用紫外光刻和等离子体刻蚀工艺制备了双层波导结构. 使用截断法测得0.5 cm长的掺铒TeO2波导在1310 nm波长处的最低光学损耗为0.607 dB/cm, 放大性能测量表明在1545 nm波段, 波导具有7.2 dB/cm的光学内增益. 这些实验结果表明, 掺铒TeO2波导在平面集成波导放大器领域极具应用潜力.
    The rapid advancement of information technology has sparked an exponential demand for high-speed, large-capacity data transmission and processing. Traditional electronic communication systems face inherent limitations such as bandwidth constraints and electromagnetic interference, prompting people to shift toward photonic technologies. Integrated optical waveguides, as core components of on-chip photonic systems, enable efficient light confinement and manipulation at microscale dimensions, offering advantages in miniaturization, low power consumption, and high compatibility with existing optical communication infrastructure. Among these, erbium-doped waveguide amplifiers (EDWAs) have emerged as critical active devices for signal amplification in the 1550 nm communication band, leveraging the radiative transitions of Er3+ ions to achieve optical gain. Numerous studies have shown that the fluorescence performance of Er3+ is closely related to the factors such as doping method, preparation and annealing conditions. Besides, the performance of such amplifiers heavily relies on the choice of host materials, which must exhibit low optical loss, high rare-earth ion solubility, and compatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes. Tellurium dioxide (TeO2), with its high refractive index (2.1–2.4), broad transparency range (0.33–5 μm), exceptional chemical stability, and low phonon energy, has shown significant promise as a superior alternative to traditional materials such as silicon nitride (Si3N4) and aluminum oxide (Al2O3). This study focuses on the development of erbium-doped TeO2 (Er:TeO2) ridge waveguides for on-chip optical amplification. The Er:TeO2 thin films are deposited via radio frequency (RF) magnetron sputtering using high-purity Te and Er targets. The key deposition parameters, including Er2O3 target sputtering power (10–30 W), Ar/O2 gas flow ratio (1∶1 to 5∶1), and post-deposition annealing conditions (200–300 ℃ under oxygen atmosphere), are systematically optimized to improve photoluminescence properties. Scanning electron microscopy (SEM) and fluorescence spectroscopy are employed to evaluate film morphology and emission characteristics. A bilayer waveguide structure is designed to mitigate surface roughness induced by direct etching of the Er-doped layer. The lower Er:TeO2 active layer (500 nm in thickness) and upper undoped TeO2 cladding layer (150 nm in thickness) are patterned by using ultraviolet lithography and plasma etching (O2/Ar/CHF3 gas mixture), achieving a ridge width of 2 μm. Optical confinement and mode field distribution are simulated by using finite-difference eigenmode (FDE) analysis, confirming effective light-matter overlap within the Er-doped region. Experimental results reveal that the optimal Er:TeO2 film, deposited at an Er target power of 20 W and an Ar/O2 flow ratio of 5∶1, and annealed at 250 ℃ for 10 hours, exhibits a photoluminescence intensity of 3.5 × 106 photon counts at 1545 nm–nearly two orders of magnitude higher than non-annealed samples. Oxygen annealing effectively activates Er3+ ions while passivating oxygen vacancies, which is critical for minimizing non-radiative recombination. Excessive Er doping (30 W in sputtering power) leads to ion clustering and fluorescence quenching, highlighting the importance of controlled dopant concentration. Surface morphology analysis via SEM and optical microscopy confirms smooth, crack-free films with minimal particulate contamination, which is essential for low-loss waveguide fabrication. Waveguide performance is characterized by using the cut-back method at 1310 nm, yielding a propagation loss of 0.607 dB/cm for a 0.5 cm-long device. However, a coupling loss of 6.34 dB/facet is observed due to rough end-faces from mechanical dicing, highlighting the need for post-fabrication polishing or anti-reflective coatings. Amplification tests at 1545 nm under 980 nm pumping demonstrate an internal gain of 7.2 dB/cm at a pump power of 88.45 mW, with gain saturation observed beyond 90 mW. The broadband emission spectrum (80 nm full-width at half-maximum) further validates Er:TeO2’s potential for wideband amplification in the C-bands. In summary, this study elucidates the advantages of erbium-doped tellurium oxide (Er:TeO2) ridge waveguides as on-chip optical amplifiers, optimizes their deposition and annealing protocols, and designs a bilayer waveguide structure. The achieved low propagation loss and significant internal gain highlight the compatibility of materials with photonic integrated circuits (PICs). Future efforts will focus on improving the quality of waveguide endface, enhanc pump efficiency, and scaling device lengths to achieve practical net gains for telecommunications and quantum photonic applications. These advancements render Er:TeO2 a cornerstone material for next-generation compact, high-performance photonic systems.
  • 图 1  不同条件下沉积薄膜的荧光光谱

    Fig. 1.  Photoluminescence spectra of the films deposited under different conditions.

    图 2  不同条件下沉积薄膜的荧光光谱 (a) 铒靶材不同溅射功率下沉积薄膜的光致发光光谱; (b) 不同气体比例下沉积薄膜的光致发光光谱

    Fig. 2.  Photoluminescence spectra of the films deposited under different conditions: (a) Photoluminescence spectra of the films deposited by different sputtering power in the Er target; (b) photoluminescence spectra of the films deposited by different gas ratio.

    图 3  光学显微镜和SEM下的薄膜表面 (a) 观测图光学显微镜下观测的暗场图像; (b) 薄膜表面的SEM图像

    Fig. 3.  Observation of thin film surface under optical microscope and SEM: (a) Darkfield image observed by optical microscopy; (b) SEM image of film surface.

    图 4  波导的结构示意图以及模式分布特性

    Fig. 4.  Schematic diagram of the waveguide structure and mode distribution characteristics.

    图 5  通过线性回归拟合得到的波导传输损耗曲线, 插图是波导的界面SEM图

    Fig. 5.  Waveguide propagation loss data by linear regression fit lines, the inset is a cross-section SEM of waveguide.

    图 6  (a) 掺铒碲氧化物波导放大效应的测量; (b) 内部增益特性与泵浦强度的关系曲线

    Fig. 6.  (a) Measurement of amplification effect of erbium-doped tellurium oxide waveguide; (b) internal gain characteristics versus pump intensities.

  • [1]

    Mizuno T, Miyamoto Y 2017 Opt. Fiber Technol. 35 108Google Scholar

    [2]

    Xiao P P, Wang B 2022 Opt. Commun. 508 127709Google Scholar

    [3]

    Bradley J D B, Pollnau M 2010 Laser Photonics Rev. 5 368

    [4]

    Kish F, Lal V, Evans P, Corzine S W, Ziari M, Butrie T, Reffle M, Tsai H-S, Dentai A, Pleumeekers J, Missey M, Fisher M, Murthy S, Salvatore R, Samra P, Demars S, Kim N, James A, Hosseini A, Studenkov P, Lauermann M, Going R, Lu M, Zhang J, Tang J, Bostak J, Vallaitis T, Kuntz M, Pavinski D, Karanicolas A, Behnia B, Engel D, Khayam O, Modi N, Chitgarha M R, Mertz P, Ko W, Maher R, Osenbach J, Rahn J T, Sun H, Wu K-T, Mitchell M, Welch D 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100120

    [5]

    陈子萍, 舒浩文, 王兴军 2017 中国科学: 物理学 力学 天文学 47 127301Google Scholar

    Chen Z P, Shu H W, Wang X J 2017 Sci. China: Phys. Mech. Astron. 47 127301Google Scholar

    [6]

    Yan K L, Vu K, Madden S 2015 Opt. Lett. 40 796Google Scholar

    [7]

    Yan K L, Vu K, Wang R P, Madden S 2016 Opt. Express 24 23304Google Scholar

    [8]

    Demirtas M, Ay F 2020 IEEE J. Sel. Top. Quantum Electron. 26 9801801

    [9]

    Yang J, van Dalfsen K, Wörhoff K, Ay F, Pollnau M 2010 Applied Physics B 101 119Google Scholar

    [10]

    Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar

    [11]

    Rönn J, Zhang W, Autere A, Leroux X, Pakarinen L, Alonso-Ramos C, Säynätjoki A, Lipsanen H, Vivien L, Cassan E, Sun Z 2019 Nat. Commun. 10 432Google Scholar

    [12]

    Hu J J, Tarasov V, Agarwal A, Kimerling K 2007 Opt. Express 15 2307Google Scholar

    [13]

    Pelusi M D, Luan F, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Eggleton B J 2010 IEEE Photonics Technol. Lett. 22 3Google Scholar

    [14]

    Vu A T, Vu A N, Grunwald T, Bergs T 2020 Journal of the American Ceramic Society 103 2791Google Scholar

    [15]

    Nayak R, Gupta V, Dawar A L, Sreenivas K 2003 Thin Solid Films 445 118Google Scholar

    [16]

    Pietralunga S M, Lanata M, Ferè M, Piccinin D, Cusmai G, Torregiani M, Martinelli M 2008 Opt. Express 16 21662Google Scholar

    [17]

    Frankis H C, Kiani K M, Su D, Mateman R, Leinse A, Bradley J D B 2018 Opt. Lett. 44 118

    [18]

    Madden S J, Vu K T 2009 Opt. Express 17 17645Google Scholar

    [19]

    Foster M A, Moll K D, Gaeta A L 2004 Opt. Express 12 2880Google Scholar

    [20]

    邬健, 杨振, 魏腾秀, 张政, 王威, 刘瑞雪, 王荣平 2023 应用激光 43 127

    Wu J, Yang Z, Wei T X, Zhang Z, Wang W, Liu R X, Wang R P 2023 Appl. Laser 43 127

    [21]

    Liu R X, Zhang Z, Yang Z, Wang W, Yan K L, Song M Z, Wang R P 2023 Appl. Phys. Lett. 123 151109Google Scholar

    [22]

    刘瑞雪, 张政, 邬健, 杨振, 魏腾秀, 王荣平 2023 光子学报 52 1

    Liu R X, Zhang Z, Wu J, Yang Z, Wang W, Wei T X, Wang R P 2023 Acta Photonica Sin. 52 1

    [23]

    Wang W, Wei T X, Zhang Z, Yang Z, Liu R X, Yan K L, Cai D, Yang X Y, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5715Google Scholar

    [24]

    Saikumar A K, Nehate S D, Sundaram K B 2019 ECS J. Solid State Sci. Technol. 8 3064Google Scholar

    [25]

    Liang H W, Chen Y P, Xia X C, Zhang C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Mater. Sci. Semicond. Process. 39 582Google Scholar

    [26]

    魏腾秀, 杨振, 邬健, 孙元欢, 王荣平 2022 光子学报 51 117

    Wei T X, Yang Z, Wu J, Sun Y H, Wang R P 2022 Acta Photonica Sin. 51 117

    [27]

    Lu R C, Link S, Zhang S B, Breen M, Gong S B 2019 J. Microelectromech. Syst. 28 569Google Scholar

  • [1] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.72.20221902
    [2] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, doi: 10.7498/aps.71.20211585
    [3] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, doi: 10.7498/aps.71.20211324
    [4] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, doi: 10.7498/aps.64.108201
    [5] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, doi: 10.7498/aps.64.045206
    [6] 甘平, 辜敏, 卿胜兰, 鲜晓东. Te/TeO2-SiO2复合薄膜的吸收和非线性光学特性研究. 物理学报, doi: 10.7498/aps.62.078101
    [7] 汪昌州, 朱伟玲, 翟继卫, 赖天树. Ga30Sb70/Sb80Te20纳米复合多层薄膜的相变特性研究. 物理学报, doi: 10.7498/aps.62.036402
    [8] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, doi: 10.7498/aps.62.094201
    [9] 杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣. In掺杂氮化亚铜薄膜的电学、光学和结构特性研究. 物理学报, doi: 10.7498/aps.62.118104
    [10] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究. 物理学报, doi: 10.7498/aps.61.217301
    [11] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, doi: 10.7498/aps.61.056801
    [12] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, doi: 10.7498/aps.60.036804
    [13] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, doi: 10.7498/aps.60.047803
    [14] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, doi: 10.7498/aps.59.2498
    [15] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, doi: 10.7498/aps.58.2488
    [16] 宋 峰, 苏瑞渊, 傅 强, 覃 斌, 田建国, 张光寅. 高浓度镱铒共掺磷酸盐光纤放大器增益特性. 物理学报, doi: 10.7498/aps.54.5228
    [17] 宋 琦, 宋昌烈, 李成仁, 李淑凤, 李建勇. 纵向非均匀掺铒的光波导放大器特性数值模拟研究. 物理学报, doi: 10.7498/aps.54.1624
    [18] 李 涛, 张勤远, 冯洲明, 赵 纯, 姜中宏. 碱金属和碱土金属氟化物对掺Er3+氟磷酸盐玻璃光谱性质的影响. 物理学报, doi: 10.7498/aps.54.4926
    [19] 罗向东, 孙炳华, 徐仲英. GaNxAs1-x(x<0.01)中合金态的光学特性. 物理学报, doi: 10.7498/aps.54.2385
    [20] 许海军, 富笑男, 孙新瑞, 李新建. 硅纳米孔柱阵列的结构和光学特性研究. 物理学报, doi: 10.7498/aps.54.2352
计量
  • 文章访问数:  326
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-13
  • 修回日期:  2025-06-11
  • 上网日期:  2025-06-18

/

返回文章
返回