搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波长调谐激光系统的双路光强信号噪声分析

吴育鹏 马凯 孔新新 伍洲 张文喜

引用本文:
Citation:

基于波长调谐激光系统的双路光强信号噪声分析

吴育鹏, 马凯, 孔新新, 伍洲, 张文喜

Noise analysis of dual-channel light intensity signal based on wavelength-tuned laser system

WU Yupeng, MA Kai, Kong Xinxin, Wu Zhou, ZHANG Wenxi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 波长调谐激光器广泛应用于精密干涉测量、超稳激光器等领域。激光器波长调谐精度、稳频精度是表征其性能的重要参数。为提高激光器调谐精度、稳频精度,常采用双光路进行闭环控制,如饱和吸收空间稳频光路,控制光路探测的信噪比是决定控制精度的重要参数。研究影响控制光路探测信噪比的相关参数,给出相应的影响关系,对进一步提升激光器调谐精度、稳频精度具有重要的工程应用价值。文章理论推导了光学器件核心指标、系统杂散光等参数与探测信噪比之间的相互关系,搭建了基于饱和吸收的反馈稳频激光系统。实验结果表明由于强度噪声的存在,探测器信噪比降低至15dB且波形严重失真,通过偏振态控制可将信噪比提升至31dB且波形良好。通过控制变量实验,验证了理论研究的正确性,该研究能够作为稳频控制光路光学器件选型、系统参数设计的依据。
    Wavelength-tunable lasers play a crucial role in fields such as precision interferometry and ultra-stable laser applications. The precision of wavelength tuning and the accuracy of frequency stabilization in lasers serve as key indicators of their performance. To enhance these aspects, closed-loop control with dual-beam paths, such as saturated absorption spectrum spatial stabilization, is commonly employed. The signal-to-noise ratio (SNR) of the control beam detection significantly impacts the control precision. Investigating parameters that influence this SNR and analyzing their relationships hold great engineering significance for further improving the tuning precision and frequency stabilization accuracy of lasers.
    To increase the SNR, this article examines intensity noise in wavelength-modulation systems based on the polarizer — phase-delay — polarizer model. A polarization beam splitter (PBS) cannot achieve a zero polarization extinction ratio (PER), thus introducing intensity noise from the interference of p and s polarization light. Additionally, non-ideal stray light, such as back-reflected and scattered light from optical components, further reduces the SNR of the detection signal when it converges on the detector's active area. This chapter provides a detailed analysis of these two types of noise, exploring the effects of factors such as PER, wavelength-modulation range, beam diameter, laser polarization direction, and modulation frequency. Building on theoretical analysis, it also simulates optical phenomena involving half-wave plates with different tilt and rotation angles, as well as dual-frequency Gaussian elliptically polarized light under various modulation parameters.
    Theoretical analysis indicates that the intensities of p and s polarization light undergo periodic variations as the angles between the half-wave plate's optical axis and the PBS's slow-axis direction and between the linear-polarization direction and the half-wave plate's optical axis change. The positions of the extreme values of these intensities shift with variations in PER. At certain specific angles, destructive interference leads to extremely low intensities in both transmitted and reflected light. Furthermore, when the detector receives stray light of multiple frequencies, the synthesized phase varies periodically with wavelength tuning. This implies that as time progresses (corresponding to the center wavelength being tuned to different values), the interference intensity exhibits periodic changes from constructive interference to destructive interference and back to constructive interference. Consequently, abnormal dips and peaks may appear in the optical signal intensity.
    The experiment employed a 633-B-A81-SA-PZT laser from LD-PD INC with a 10mW output. Simulation used a true zero-order half-wave plate model centered at 633 nm. The laser wavelength was tunable within 633 nm±10 pm, with a 10kHz sine-wave current modulation under wavelength-current tuning coefficient of 1 pm/mA. After an isolator, a 90:10 coupler split the beam into a 9mW output and a 1mW experiment beam, which was collimated and adjusted by a polarizer, a true zero-order half-wave plate, and a PBS to set the p and s light power ratio. Two Thorlabs FDS100 detectors captured the beams, with signals collected via a data acquisition card. PD1 and PD2 signals showed significant differences under certain conditions, and the p and s light signals varied periodically with half-wave plate rotation. Adding a polarizer at the laser exit and adjusting its angle improved signal consistency. After alignment, the SNR rose by 10 dB to 31 dB .
    In this study, wavelength tuning of a 633nm semiconductor laser was performed using a saturated absorption spectrum ring light path. Under different modulation conditions, inconsistencies in the two-beam intensity signals were observed. Polarization control raised the SNR to 31 dB, confirming the theoretical model. Additionally, time domain analysis of stray light from the wavelength-tuned source revealed that reducing the wavelength tuning range and modulation frequency effectively suppresses high frequency noise.
  • [1]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011Acta Phys. Sin. 60 249(in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2011物理学报60 249]

    [2]

    Gao Z X, Chu Q H,Shu Q, Li F Y, Wen Y, Jiang X C, Chen C, Wen J, Zhang C, Li F, Li L, Tao R M, Lin H H, Peng Z T, Wang J J 2025Laser & Optoelectronics Progress. 62 1(in Chinese) [高子翔, 楚秋慧, 舒强, 李峰云, 温雨, 蒋星晨, 陈成, 温静, 张春, 李芳, 李力, 陶汝茂, 林宏奂, 彭志涛, 王建军2025激光与光电子学进展62 1]

    [3]

    Li K, Yang S H, Liao Y Q, Lin X T, Wang X, Zhang J Y, Li Z. 2021Acta Phys. Sin. 70 242(in Chinese) [李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓2021物理学报70 242]

    [4]

    Huang Z Q, Li Q Z, Zhang M, Peng Z M, Yang Q S 2023Acta Phys. Sin. 72 105(in Chinese) [黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁2023物理学报72 105]

    [5]

    Yang Y, Long M L, Ding J, Lu Z Y, Zhang H F, He H Y, Wu C G, Zhang Z P, Bai Z X 2025Laser & Optoelectronics Progress. 62 36(in Chinese) [阳宇,龙明亮,丁洁,卢智勇,张海峰,贺红雨,吴宸光,张忠萍,白振旭2025激光与光电子学进展62 36]

    [6]

    Wallard A J 1972Journal of Physics E-Scientific Instruments. 5926.

    [7]

    Chen W, Wu Y, Luo J, Liu J B, Wang L, Zhu X X, Zhu T 2019Opto-Electronic Engineering 46 36(in Chinese) [陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛2019光电工程46 36]

    [8]

    Deng Z W, Liu C F, Zhang H K, Sun H F, Zhang S W, Li X P 2025 Metrology & Measurement Technology 45 68(in Chinese) [邓忠文, 刘传锋, 张恒康, 孙海峰, 张树威, 李小平2025计测技术45 68]

    [9]

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015Acta Phys. Sin. 64 136(in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏2015物理学报64 136]

    [10]

    K. Petermann 1988Laser Diode Modulation and Noise (Springer Dordrecht) pp78—118

    [11]

    He Z Y, An B N, Wang T, Zhao X K, Liu X S, Chen L R, Wang Y J 2025Acta Phys. Sin. 74 165(in Chinese) [贺子洋, 安炳南, 王韬, 赵晓康, 刘向嵩, 陈力荣, 王雅君2025物理学报74 165]

    [12]

    Viacheslav S, Annina R, Grigory L, Mikhail C, Johann R, Wang R N, Anat S, Huang G H, Charles Möhl, Youri Popoff, Ute Drechsler, Daniele Caimi, Simon Hönl, Junqiu Liu, Paul Seidler, Tobias J. Kippenberg 2023Nature 615 411

    [13]

    Sheng L, Wang J, Huang L, Zhang A, Zhang Z, Qiao S, Wei Y, Liu Z, Ju J, Zhou S, Liu J, Han J and Jin H 2024Frontiers in Physics 12 138

    [14]

    Dai P, Chen Z, Sun Z X, Ge H T, Dai J, Lu J, Wang F, Xiao R L, Tong H, Dou R R, Chen X F 2023Chinese Optics Letters 21109

    [15]

    Yang X M, Liu X B, Li C Y, Pan H, Xue S M, Mao Q H 2024Laser & Optoelectronics Progress 61 283(in Chinese) [杨秀梅, 刘孝兵, 李重阳, 潘浩, 薛驷明, 毛庆和2024激光与光电子学进展61 283]

    [16]

    Shang Y F, Shi Q X, Yang Y S, Huang Y Q, Zhang Y 2022Laser & Optoelectronics Progress. 59 217[尚玉峰, 师钦贤, 杨一粟, 黄永清, 张勇2024激光与光电子学进展59 217]

    [17]

    Wanner G, Heinzel G 2014Applied Optics 53 3043.

    [18]

    Zhang C Y 2004 M.S. Dissertation (Tianjin: Tianjin University) (in Chinese) [张聪跃2004硕士学位论文(天津:天津大学)]

    [19]

    Lei Z T 1995Introduction to Physical Optica (Chengdu: Electronic Science and Technology University Press) pp332-342(in Chinese) [雷肇棣1995物理光学导论(成都: 电子科技大学出版社)第332-342页]

    [20]

    Hanes G R, Dahlstrom C E 1969Applied Physics Letters 14 362.

    [21]

    Fang Z J, Cai H W, Chen G T, Qu R H 2017Single Frequency Semiconductor Lasers (Singapore: Springer Singapore 1 ed) pp167-204

  • [1] 贾雪琦, 刁新财, 常国庆. 基于双波长飞秒光源的高功率2—5 μm中红外超快激光. 物理学报, doi: 10.7498/aps.74.20250348
    [2] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, doi: 10.7498/aps.72.20230759
    [3] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, doi: 10.7498/aps.69.20191881
    [4] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光. 物理学报, doi: 10.7498/aps.65.154205
    [5] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, doi: 10.7498/aps.63.043301
    [6] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, doi: 10.7498/aps.62.024208
    [7] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, doi: 10.7498/aps.61.014201
    [8] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, doi: 10.7498/aps.61.214208
    [9] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, doi: 10.7498/aps.60.094207
    [10] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, doi: 10.7498/aps.59.5541
    [11] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, doi: 10.7498/aps.59.7679
    [12] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器. 物理学报, doi: 10.7498/aps.59.5105
    [13] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, doi: 10.7498/aps.58.6058
    [14] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, doi: 10.7498/aps.58.285.1
    [15] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, doi: 10.7498/aps.58.7241
    [16] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, doi: 10.7498/aps.57.7663
    [17] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, doi: 10.7498/aps.57.2266
    [18] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, doi: 10.7498/aps.56.3945
    [19] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, doi: 10.7498/aps.56.4686
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  34
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-13

/

返回文章
返回