搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波长调谐激光系统的双路光强信号噪声分析

吴育鹏 马凯 孔新新 伍洲 张文喜

引用本文:
Citation:

基于波长调谐激光系统的双路光强信号噪声分析

吴育鹏, 马凯, 孔新新, 伍洲, 张文喜

Noise analysis of dual-channel light intensity signal based on wavelength-tuned laser system

WU Yupeng, MA Kai, KONG Xinxin, WU Zhou, ZHANG Wenxi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 波长调谐激光器广泛应用于精密干涉测量、超稳激光器等领域. 激光器波长调谐精度、稳频精度是表征其性能的重要参数. 为提高激光器调谐精度、稳频精度, 常采用双光路进行闭环控制, 如饱和吸收空间稳频光路, 控制光路探测的信噪比是决定控制精度的重要参数. 研究影响控制光路探测信噪比的相关参数, 给出相应的影响关系, 对进一步提升激光器调谐精度、稳频精度具有重要的工程应用价值. 本文理论推导了光学器件核心指标、系统杂散光等参数与探测信噪比之间的相互关系, 搭建了基于饱和吸收的反馈稳频激光系统. 实验结果表明由于强度噪声的存在, 探测器信噪比降低至15 dB且波形严重失真, 通过偏振态控制可将信噪比提升至31 dB且波形良好. 通过控制变量实验, 验证了理论研究的正确性, 该研究能够作为稳频控制光路光学器件选型、系统参数设计的依据.
    Wavelength-tunable lasers play a crucial role in fields such as precision interferometry and ultra-stable laser applications. The precision of wavelength tuning and the accuracy of frequency stabilization in lasers are the key indicators of their performance. To improve these performance, closed-loop control with dual-beam paths, such as saturated absorption spectrum spatial stabilization, is commonly utilized. The signal-to-noise ratio (SNR) of the control beam detection significantly affects the control precision. Investigating the parameters that influence this SNR and analyzing their relationships are of great engineering significance for further improving the tuning precision and frequency stabilization accuracy of lasers.To increase the SNR, this work examines intensity noise in wavelength-modulation systems based on the polarizer-phase-delay-polarizer model. A polarization beam splitter (PBS) cannot achieve a zero polarization extinction ratio (PER), thus introducing intensity noise from the interference between p and s polarization light. Additionally, non-ideal stray light, such as back-reflected and scattered light from optical components, further reduces the SNR of the detection signal when it converges on the detector’s active area. This work carries out a detailed analysis of these two types of noise, exploring the effects of factors such as PER, wavelength-modulation range, beam diameter, laser polarization direction, and modulation frequency. Based on the theoretical analysis, it also simulates optical phenomena involving half-wave plates with different tilt angles and rotation angles, as well as dual-frequency Gaussian elliptically polarized light under various modulation parameters.The theoretical analysis indicates that the intensities of p and s polarization light undergo periodic variations as the angle between the half-wave plate’s optical axis and the PBS’s slow-axis direction, as well as the angle between the linear-polarization direction and the half-wave plate’s optical axis, changes. The extreme positions of these intensities move with the PER changing. At certain specific angles, destructive interference leads to extremely low intensities in both transmitted and reflected light. Furthermore, when the detector receives stray light of multiple frequencies, the synthesized phase varies periodically with wavelength tuning. This means that over time (corresponding to tuning the center wavelength to different values), the interference intensity exhibits periodic changes from constructive interference to destructive interference and then to constructive interference. Consequently, abnormal dips and peaks may appear in the optical signal intensity.A 633-B-A81-SA-PZT laser from LD-PD INC with a 10mW output is used in the experiment. A true zero-order half-wave plate model centered at 633 nm is adopted in the simulation. The laser wavelength is tunable in the range of 633 nm±10 pm, and 10 kHz sine-wave current modulation is used, with a wavelength-current tuning coefficient of 1 pm/mA. After an isolator, a 90∶10 coupler splits the beam into a 9 mW output and a 1mW experiment beam, which is collimated and adjusted by a polarizer, a true zero-order half-wave plate, and a PBS to set the ratio of p light power to s light power. Two Thorlabs FDS100 detectors capture the beams, with signals collected via a data acquisition card. The PD1 and PD2 signals show significant differences under certain conditions, and the p and s light signals vary periodically with half-wave plate rotating. Adding a polarizer at the laser exit and adjusting its angle can improve signal consistency. After alignment, the SNR increases from 10 dB to 31 dB.In this study, wavelength of a 633nm semiconductor laser is tuned by using a saturated absorption spectrum ring light path. Under different modulation conditions, inconsistencies in the intensity signals of two beams are observed. Polarization control increases the SNR to 31 dB, confirming the theoretical model. Additionally, time domain analysis of stray light from the wavelength-tuned source shows that reducing the wavelength tuning range and modulation frequency can effectively suppress high frequency noise.
  • 图 1  (a)波长调谐激光光源退偏实验装置图; (b)传输过程中偏振态变化示意图

    Fig. 1.  (a) Depolarization experimental setup for wavelength modulation laser; (b) schematic diagram of polarization changes during transmission.

    图 3  不同$ \alpha $和$ \beta $下的透射光(左)和反射光强度(右)

    Fig. 3.  Transmitted light (left) and reflected light intensity (right) under different $ \alpha $ and $ \beta $.

    图 2  不同$ \alpha $和$ \beta $下的透射光、反射光强度之和

    Fig. 2.  Sum of transmitted light and reflected light intensity under different $ \alpha $and $ \beta $.

    图 4  饱和吸收实验装置图

    Fig. 4.  Experimental setup for saturated absorption spectroscopy.

    图 5  不同时刻下的双频同偏椭圆高斯光干涉信号

    Fig. 5.  Interference signals of double frequency Gaussian light with the same polarization at different time.

    图 6  不同时刻下的双频同偏椭圆高斯光相位差

    Fig. 6.  Phase difference of double frequency Gaussian light with the same polarization at different time.

    图 7  相位噪声与调制深度、光束直径、光程差、调制频率的关系

    Fig. 7.  Relationship between phase noise and modulation depth, beam diameter, optical path difference and modulation frequency.

    图 8  不同半波片旋转角度及调制参数下的p光、s光信号, 调制深度30%, 正弦波调制, 半波片转角0正弦波调, 30弦波调制, 60弦波调制, POL对准光轴(f); 调制深度60%, 半波片转角0半, 正弦波调制(d), 锯齿波调制(e)

    Fig. 8.  Signals of p light & s light under different HWP rotation angles and modulation parameters. Modulation depth 30%, sine wave modulation, half-wave plate angle 0° (a), 30° (b), 60° (c), POL aligned to optical axis (f); modulation depth 60%, half-wave plate angle 0, sine wave modulation (d), sawtooth wave modulation (e).

    图 9  探测器对p光(a)和s光(b)的响应信号

    Fig. 9.  Response signals to p light (a) and s light (b).

    图 10  不同半波片倾角下的相位延迟量

    Fig. 10.  Phase-delay under different HWP angles.

    图 12  激光器驱动电流稳定性监测(a)及工作温度稳定性监测(b)

    Fig. 12.  Laser driver current stability monitoring (a) and operating temperature stability monitoring (b).

    图 11  激光器波长-电流曲线和功率-电流曲线

    Fig. 11.  Laser wavelength-current curve and power-current curve.

    表 1  不同半波片旋转角和调制参数下的p光、s光信噪比

    Table 1.  Signals to noise ratio of p light and s light under different HWP rotation angles and modulation parameters.

    SNR/dBp lights light
    Modulation
    depth 30%
    Sine wave-angel 0°25.490737.2894
    Sine wave-angel 30°21.285936.3941
    Sine wave-angel 60°31.604827.4752
    Sine wave-with POL30.666631.3396
    Modulation
    depth 60%
    Sine wave-angel 0°18.128033.0986
    Sawtooth wave-angel 0°15.496637.8797
    下载: 导出CSV

    表 2  波长曲线与功率曲线的线性度分析

    Table 2.  Linearity analysis of wavelength curve and power curve.

    Slope k Intercept b R2
    Power curve 0.0399 –2.5156 0.9897
    Wavelength curve 0.0024 632.4867 0.9483
    下载: 导出CSV
  • [1]

    王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君 2011 物理学报 60 084203Google Scholar

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203Google Scholar

    [2]

    高子翔, 楚秋慧, 舒强, 李峰云, 温雨, 蒋星晨, 陈成, 温静, 张春, 李芳, 李力, 陶汝茂, 林宏奂, 彭志涛, 王建军 2025 激光与光电子学进展62 7] 高

    Gao Z X, Chu Q H, Shu Q, Li F Y, Wen Y, Jiang X C, Chen C, Wen J, Zhang C, Li F, Li L, Tao R M, Lin H H, Peng Z T, Wang J J 2025 Laser Optoelectron. Prog. 62 7

    [3]

    李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓 2021 物理学报 70 084203Google Scholar

    Li K, Yang S H, Liao Y Q, Lin X T, Wang X, Zhang J Y, Li Z. 2021 Acta Phys. Sin. 70 084203Google Scholar

    [4]

    黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁 2023 物理学报 72 123301Google Scholar

    Huang Z Q, Li Q Z, Zhang M, Peng Z M, Yang Q S 2023 Acta Phys. Sin. 72 123301Google Scholar

    [5]

    阳宇, 龙明亮, 丁洁, 卢智勇, 张海峰, 贺红雨, 吴宸光, 张忠萍, 白振旭 2025 激光与光电子学进展 62 0100003Google Scholar

    Yang Y, Long M L, Ding J, Lu Z Y, Zhang H F, He H Y, Wu C G, Zhang Z P, Bai Z X 2025 Laser Optoelectron Prog. 62 0100003Google Scholar

    [6]

    Wallard A J 1972 J. Phys. E Sci. Instr. 5 926Google Scholar

    [7]

    陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛 2019 光电工程 46 36

    Chen W, Wu Y, Luo J, Liu J B, Wang L, Zhu X X, Zhu T 2019 Opto Electron. Eng. 46 36

    [8]

    邓忠文, 刘传锋, 张恒康, 孙海峰, 张树威, 李小平 2025 计测技术 45 68Google Scholar

    Deng Z W, Liu C F, Zhang H K, Sun H F, Zhang S W, Li X P 2025 MMT 45 68Google Scholar

    [9]

    张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 053301Google Scholar

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 053301Google Scholar

    [10]

    Petermann K 1988 Laser Diode Modulation and Noise (Springer Dordrecht) pp78–118

    [11]

    贺子洋, 安炳南, 王韬, 赵晓康, 刘向嵩, 陈力荣, 王雅君 2025 物理学报 74 094203Google Scholar

    He Z Y, An B N, Wang T, Zhao X K, Liu X S, Chen L R, Wang Y J 2025 Acta Phys. Sin. 74 094203Google Scholar

    [12]

    Snigirev V, Riedhauser A, Lihachev G, Churaev M, Riemensberger J, Wang R N, Siddharth A, Huang G H, Möhl C, Popoff Y, Drechsler U, Caimi D, Hönl S, Liu J Q, Seidler P, Kippenberg T J 2023 Nature 615 411

    [13]

    Sheng L W, Wang J J, Huang L, Zhang A G, Zhang Z H, Qiao S, Wei Y, Liu Z M, Ju J W, Zhou S, Liu J Q, Han J L, Jin H 2024 Front. Phys. 12 138

    [14]

    Dai P, Chen Z, Sun Z X, Ge H T, Dai J, Lu J, Wang F, Xiao R L, Tong H, Dou R R, Chen X F 2023 Chin. Opt. Lett. 21 109

    [15]

    杨秀梅, 刘孝兵, 李重阳, 潘浩, 薛驷明, 毛庆和 2024 激光与光电子学进展 61 283

    Yang X M, Liu X B, Li C Y, Pan H, Xue S M, Mao Q H 2024 Laser Optoelectron. Prog. 61 283

    [16]

    尚玉峰, 师钦贤, 杨一粟, 黄永清, 张勇 2024 激光与光电子学进展 59 217

    Shang Y F, Shi Q X, Yang Y S, Huang Y Q, Zhang Y 2022 Laser Optoelectron. Prog. 59 217

    [17]

    Wanner G, Heinzel G 2014 Appl. Opt. 53 3043Google Scholar

    [18]

    张聪跃 2004 硕士学位论文 (天津: 天津大学)

    Zhang C Y 2004 M. S. Thesis (Tianjin: Tianjin University

    [19]

    雷肇棣 1995 物理光学导论(成都: 电子科技大学出版社) 第332—342页

    Lei Z T 1995 Introduction to Physical Optica (Chengdu: Electronic Science and Technology University Press) pp332–342

    [20]

    Hanes G R, Dahlstrom C E 1969 Appl. Phys. Lett. 14 362.Google Scholar

    [21]

    Fang Z J, Cai H W, Chen G T, Qu R H 2017 Single Frequency Semiconductor Lasers (Singapore: Springer Singapore 1 ed) pp167–204

  • [1] 贾雪琦, 刁新财, 常国庆. 基于双波长飞秒光源的高功率2—5 μm中红外超快激光. 物理学报, doi: 10.7498/aps.74.20250348
    [2] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, doi: 10.7498/aps.72.20230759
    [3] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, doi: 10.7498/aps.69.20191881
    [4] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光. 物理学报, doi: 10.7498/aps.65.154205
    [5] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, doi: 10.7498/aps.63.043301
    [6] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, doi: 10.7498/aps.62.024208
    [7] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, doi: 10.7498/aps.61.014201
    [8] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, doi: 10.7498/aps.61.214208
    [9] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, doi: 10.7498/aps.60.094207
    [10] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, doi: 10.7498/aps.59.5541
    [11] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, doi: 10.7498/aps.59.7679
    [12] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器. 物理学报, doi: 10.7498/aps.59.5105
    [13] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, doi: 10.7498/aps.58.6058
    [14] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, doi: 10.7498/aps.58.285.1
    [15] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, doi: 10.7498/aps.58.7241
    [16] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, doi: 10.7498/aps.57.7663
    [17] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, doi: 10.7498/aps.57.2266
    [18] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, doi: 10.7498/aps.56.3945
    [19] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, doi: 10.7498/aps.56.4686
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  382
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-09
  • 修回日期:  2025-06-05
  • 上网日期:  2025-06-13

/

返回文章
返回