搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜

敬婧 李致朋 卢伟胜 王宏宇 杨祖安 杨毅 尹祺圣 杨馥菱 沈晓明 曾建民 詹锋

引用本文:
Citation:

一种具有减反射性能的Cu2ZnSnS4太阳能电池透明导电氧化物薄膜

敬婧, 李致朋, 卢伟胜, 王宏宇, 杨祖安, 杨毅, 尹祺圣, 杨馥菱, 沈晓明, 曾建民, 詹锋

Transparent conductive oxide film with antireflective properties for Cu2ZnSnS4 solar cells

Jing Jing, Li Zhi-Peng, Lu Wei-Sheng, Wang Hong-Yu, Yang Zu-An, Yang Yi, Yin Qi-Sheng, Yang Fu-Ling, Shen Xiao-Ming, Zeng Jian-Min, Zhan Feng
PDF
HTML
导出引用
  • 通过研究一种新型透明导电氧化物薄膜(transparent conductive oxide, TCO)的减反射作用, 探索增加入射光进入Cu2ZnSnS4 (CZTS)太阳能电池从而提高太阳能电池效率的新途径. 在AM1.5光照条件下, 设计了一种在宽波长范围内具有更好的减反射性能的TCO薄膜, 即SiO2/ZnO减反射TCO薄膜(antireflective transparent conductive oxide, ATCO). 为了衡量300—800 nm波长范围内的减反射效果, 引入了有效平均反射率方法(effective average reflectance, EAR)进行测算. 为充分考虑折射率色散的影响以及TCO, ATCO薄膜与有源层的耦合, 本文采用多维光学传输矩阵对各关键材料层的耦合及膜厚进行了优化, 以准确衡量最优的减反射效果. 最后, 通过比较常规CZTSSC和ATCO-CZTSSC的减反射性能, 得到了新型ATCO膜, 可以有效地减少光损耗并提高光电转换效率的结论.
    At present, there are several kinds of broadband antireflection coatings (ARCs). For the flat multilayer ARC, it usually contains double, triple, or up to 4 layers. It has been demonstrated that the performance of a single layer coating is not good enough across the desired spectral range. Multiple layer ARCs have much better performance for broadband solar cells (SCs). When inspecting the antireflection structure of Cu2ZnSnS4 solar cells (CZTSSCs), it is shown that the transparent conductive oxide (TCO) of traditional CZTSSCs does not have an satisfactory antireflective performance. This paper aims to investigate a way to increase the incident light transmitted into CZTSSCs, and thus improving the efficiency of solar cells by studying the use of the antireflective effect of a TCO film. It introduces a new type of TCO film with better antireflective properties across a wide wavelength range. An SiO2/ZnO antireflective TCO (ATCO) is designed under AM1.5 illumination. In order to measure the antireflective effect over the 300–800 nm wavelength range, an effective average reflectance method (EAR) is introduced. Considering the effect of the refractive index dispersion and the coupling of the TCO or ATCO films with the active layer, in this paper we use a multi-dimensional transfer matrix to optimize the thickness of each key layer to accurately confirm the best antireflective effect. In addition, the optimized TCO film and the optimized ATCO film in CZTSSCs are compared and analyzed by means of EAR. The result shows, through the comparison of the antireflection between conventional TCO CZTSSCs and ATCO CZTSSCs, that there are considerable differences in final optimal reflectivity between TCO layer and ATCO film. For the conventional CZTSSC, the optimal effective average reflectance of TCO layer is 5.6%, and the lowest reflectivity in the waveband from 400 nm to 500 nm is 6.9%. In addition, the corresponding values obtained in the new ATCO CZTSSC are 3.8% and 1.6% respectively. These apparent changes in reflectivity are appealing in that the new ATCO films can effectively reduce light loss and improve the efficiency of photovoltaic conversion.
      通信作者: 詹锋, fzhan_gxu@126.com
    • 基金项目: 广西自然科学基金 (批准号: 2018GXNSFAA138186, 2014GXNSFAA118025, 2013GXNSFBA019019)、国家自然科学基金(批准号: 11364003)、广西有色金属及特色材料加工重点实验室系统性研究项目(批准号: GKN13-051-02)和广西有色金属及特色材料加工国家重点实验室培育基地开放基金 (批准号: GXKFJ12-01)资助的课题
      Corresponding author: Zhan Feng, fzhan_gxu@126.com
    • Funds: Project supported by the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2018GXNSFAA138186, 2014GXNSFAA118025, 2013GXNSFBA019019), the National Natural Science Foundation of China (Grant No. 11364003), the Systematic Research Project of Key Laboratory of Processing for Non-ferrous Metal and Featured Materials of Guangxi Province, China (Grant No. GKN13-051-02), and the Open Fund of Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi Province, China (Grant No. GXKFJ12-01)
    [1]

    Siddique R H, Gomard G, and Holscher H 2015 Nat. Commun. 6 6909Google Scholar

    [2]

    Jonathan S M, Wang G Y, John R M, James R H 2018 J. Mater. Chem. C 6 823

    [3]

    Neeraj K, Choudhury S, Polley D, Acharya R, Sinha J, Barman A, Mitra R K 2017 Opt. Lett. 42 1764Google Scholar

    [4]

    Cao G Y, Zhang C, Wu S L, Ma D, Li X F 2018 Chin. Phys. B 27 124202Google Scholar

    [5]

    Li L, Wu S L, Yu D, Wang W, Liu W C, Wu X S, Zhang F M 2016 Chin. Phys. B 25 028401Google Scholar

    [6]

    Jayasinghe R C, Perera A G U, Zhu H, Zhao Y 2012 Opt. Lett. 37 4302Google Scholar

    [7]

    Zhan F, He J F, Shang X J, Li M F, Ni H Q, Xu Y Q, Niu Z C 2012 Chin. Phys. B 21 037802Google Scholar

    [8]

    Leem J W, Jun D H, Heo J, Park W K, Park J H, Cho W J, Kim D E, Yu J S 2013 Opt. Express 21 A821Google Scholar

    [9]

    Richards B S 2003 Sol. Energ. Mat. Sol. C 79 369Google Scholar

    [10]

    Algora C, Alcaraz M F 1997 IEEE T. Electron Dev. 44 1499Google Scholar

    [11]

    Sun H T, Wang X P, Kou Z Q, Wang L J, Wang J Y, Sun Y Q 2015 Chin. Phys. B 24 047701Google Scholar

    [12]

    Ali B, Shahram M, Nima J A 2014 Chin. Phys. B 23 028803Google Scholar

    [13]

    Wang N F, Kuo T W, Tsai Y Z, Lin S X, Hung P K, Lin C L, Houng M P 2012 Opt. Express 20 7445Google Scholar

    [14]

    Dumont E, Dugnoille B, Bienfait S 1999 Thin Solid Films 353 93Google Scholar

    [15]

    Seol J S, Lee S Y, Lee J C, Nam H D, Kim K H 2003 Sol. Energy Mater. Sol. Cells 75 155Google Scholar

    [16]

    Park W D 2012 Trans. Electr. Electron. Mater. 13 196Google Scholar

    [17]

    Teng C W, Muth J F, Özgür Ü, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979Google Scholar

    [18]

    Palik E D 1997 Handbook of Optical Constant of Solids (New York, USA: Academic Publishing)

    [19]

    Born M, Wolf E. 1999 Principles of Optics (Cambridge, UK: Cambridge University Press) p70

    [20]

    Macleod H A 2006 ThinFilm Optical Filters (London, UK: Institute of Physics Publishing) p86

    [21]

    Zhan F, Li Z P, Shen X M, He H, Zeng J M 2014 Sci. World J. 26 5351

    [22]

    Yuan H R, Xiang X, Chang X, Lu D 2000 Acta Energ. Sol. Sin. 21 371

  • 图 1  Cu2ZnSnS4太阳能电池示意图

    Fig. 1.  Schematic diagram of Cu2ZnSnS4 solar cells.

    图 2  传统的TCO膜的Re与膜厚的关系图

    Fig. 2.  Conventional TCO film Re vs. film thickness.

    图 3  优化后TCO膜的反射率与波长的关系

    Fig. 3.  Reflectivity of optimal TCO film vs. wavelength.

    图 4  SiO2/ZnO ATCO薄膜的Re与SiO2厚度的关系

    Fig. 4.  SiO2/ZnO ATCO films Re vs. SiO2 thickness.

    图 5  (a)最佳TCO膜反射率与波长的关系; (b)最佳SiO2/ZnO ATCO膜反射率与波长的关系

    Fig. 5.  (a) Optimal TCO film reflectivity vs. wavelength; (b) optimal SiO2/ZnO ATCO films reflectivity vs. wavelength.

    表 1  通过EAR方法优化的用于CZTS太阳能电池的常规TCO和新ATCO膜的参数

    Table 1.  Parameters of conventional TCO and new ATCO films for CZTSSC optimized by EAR method.

    常规TCO
    (图2图3)
    新ATCO
    (图4图5)
    变化比
    例/%
    SiO2 厚度/nm70
    ZnO 厚度/nm50500
    CdS 厚度/nm20200
    最低反射率(400—500 nm)/%6.91.6–5.3
    有效平均反射率(Re)/%5.63.8–1.8
    下载: 导出CSV
  • [1]

    Siddique R H, Gomard G, and Holscher H 2015 Nat. Commun. 6 6909Google Scholar

    [2]

    Jonathan S M, Wang G Y, John R M, James R H 2018 J. Mater. Chem. C 6 823

    [3]

    Neeraj K, Choudhury S, Polley D, Acharya R, Sinha J, Barman A, Mitra R K 2017 Opt. Lett. 42 1764Google Scholar

    [4]

    Cao G Y, Zhang C, Wu S L, Ma D, Li X F 2018 Chin. Phys. B 27 124202Google Scholar

    [5]

    Li L, Wu S L, Yu D, Wang W, Liu W C, Wu X S, Zhang F M 2016 Chin. Phys. B 25 028401Google Scholar

    [6]

    Jayasinghe R C, Perera A G U, Zhu H, Zhao Y 2012 Opt. Lett. 37 4302Google Scholar

    [7]

    Zhan F, He J F, Shang X J, Li M F, Ni H Q, Xu Y Q, Niu Z C 2012 Chin. Phys. B 21 037802Google Scholar

    [8]

    Leem J W, Jun D H, Heo J, Park W K, Park J H, Cho W J, Kim D E, Yu J S 2013 Opt. Express 21 A821Google Scholar

    [9]

    Richards B S 2003 Sol. Energ. Mat. Sol. C 79 369Google Scholar

    [10]

    Algora C, Alcaraz M F 1997 IEEE T. Electron Dev. 44 1499Google Scholar

    [11]

    Sun H T, Wang X P, Kou Z Q, Wang L J, Wang J Y, Sun Y Q 2015 Chin. Phys. B 24 047701Google Scholar

    [12]

    Ali B, Shahram M, Nima J A 2014 Chin. Phys. B 23 028803Google Scholar

    [13]

    Wang N F, Kuo T W, Tsai Y Z, Lin S X, Hung P K, Lin C L, Houng M P 2012 Opt. Express 20 7445Google Scholar

    [14]

    Dumont E, Dugnoille B, Bienfait S 1999 Thin Solid Films 353 93Google Scholar

    [15]

    Seol J S, Lee S Y, Lee J C, Nam H D, Kim K H 2003 Sol. Energy Mater. Sol. Cells 75 155Google Scholar

    [16]

    Park W D 2012 Trans. Electr. Electron. Mater. 13 196Google Scholar

    [17]

    Teng C W, Muth J F, Özgür Ü, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979Google Scholar

    [18]

    Palik E D 1997 Handbook of Optical Constant of Solids (New York, USA: Academic Publishing)

    [19]

    Born M, Wolf E. 1999 Principles of Optics (Cambridge, UK: Cambridge University Press) p70

    [20]

    Macleod H A 2006 ThinFilm Optical Filters (London, UK: Institute of Physics Publishing) p86

    [21]

    Zhan F, Li Z P, Shen X M, He H, Zeng J M 2014 Sci. World J. 26 5351

    [22]

    Yuan H R, Xiang X, Chang X, Lu D 2000 Acta Energ. Sol. Sin. 21 371

  • [1] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质. 物理学报, 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [2] 刘辉城, 许佳雄, 林俊辉. Si衬底Cu2ZnSnS4太阳能电池的数值分析. 物理学报, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [3] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [4] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [5] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究. 物理学报, 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [6] 刘伟峰, 宋建军. 应变(001)p型金属氧化物半导体反型层空穴量子化与电导率有效质量. 物理学报, 2014, 63(23): 238501. doi: 10.7498/aps.63.238501
    [7] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响. 物理学报, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [8] 潘惠平, 薄连坤, 黄太武, 张毅, 于涛, 姚淑德. 铜铟镓硒太阳能电池多层膜的结构分析. 物理学报, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [9] 李国龙, 李进, 甄红宇. TiO2光学间隔层增强聚合物太阳能电池光吸收的分析. 物理学报, 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [10] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度. 物理学报, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [11] 许佳雄, 姚若河. n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4太阳能电池光伏特性的分析. 物理学报, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [12] 肖正国, 曾雪松, 郭浩民, 赵志飞, 史同飞, 王玉琦. NiO透明导电薄膜的制备及在聚合物太阳能电池中的应用. 物理学报, 2012, 61(2): 026802. doi: 10.7498/aps.61.026802
    [13] 方志杰, 莫曼, 朱基珍, 杨浩. 透明导电氧化物CuScO2的密度泛函理论研究. 物理学报, 2012, 61(22): 227401. doi: 10.7498/aps.61.227401
    [14] 邱克强, 刘正坤, 徐向东, 刘颖, 洪义麟, 付绍军. 全息光刻中的驻波效应研究. 物理学报, 2012, 61(1): 014204. doi: 10.7498/aps.61.014204
    [15] 孙菁华, 徐耀, 晏良宏, 吕海兵, 袁晓东. 用于1053nm高功率脉冲激光的有序介孔减反射膜. 物理学报, 2012, 61(20): 206802. doi: 10.7498/aps.61.206802
    [16] 周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰. 非晶硅光伏电池表面高效光陷阱结构设计. 物理学报, 2011, 60(8): 088802. doi: 10.7498/aps.60.088802
    [17] 刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [18] 孙贤明, 哈恒旭. 基于反射太阳光反演气溶胶光学厚度和有效半径. 物理学报, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [19] 陈新亮, 薛俊明, 张德坤, 孙 建, 任慧志, 赵 颖, 耿新华. 衬底温度对MOCVD法沉积ZnO透明导电薄膜的影响. 物理学报, 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [20] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制. 物理学报, 1994, 43(7): 1152-1158. doi: 10.7498/aps.43.1152
计量
  • 文章访问数:  6443
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 修回日期:  2020-07-20
  • 上网日期:  2020-12-02
  • 刊出日期:  2020-12-05

/

返回文章
返回