搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态

李吉 刘斌 白晶 王寰宇 何天琛

引用本文:
Citation:

环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态

李吉, 刘斌, 白晶, 王寰宇, 何天琛

Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap

Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen
PDF
HTML
导出引用
  • 研究了在环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 探索了自旋-轨道耦合作用和旋转效应对基态的影响. 结果发现, 在环形势阱下, 基态结构呈现环形分布的half-skyrmion链. 调节自旋-轨道耦合强度, 不仅可以改变体系内half-skyrmion数量, 而且能够调控half-skyrmion环形排列的对称性. 随着旋转频率增大, 体系从平面波相转化为环形对称排列的half-skyrmion链相, 最后过渡到三角格子的half-skyrmion相. 讨论了自旋相互作用和势阱形状对基态的影响. 自旋-轨道耦合强度和旋转频率作为体系的调控参数, 可用于控制不同基态相间的转化.
    Realization of spinor Bose-Einstein condensate in an optical trap has made it possible to create a variety of topological nontrivial structures, due to the vector character of the order parameter. Recently, artificial spin-orbit coupling in the spinor Bose-Einstein condensate, owing to coupling between the spin and the center-of-mass motion of the atom, provides an unprecedented opportunity to search for novel quantum states. As is well known, the potential well in the Bose-Einstein condensate is adjustable. The toroidal trap is an important model potential because of its simplicity and richness in physics. In particular, the spinor Bose-Einstein condensate under the toroidal trap has brought an ideal platform for studying fascinating properties of a superfluid, such as persistent flow and symmetry-breaking localization. For the case of the spin-orbit-coupled Bose-Einstein condensate, the previous studies of the toroidal trap mainly focused on the two-component or antiferromagnetic case. However, in the presence of a toroidal trap, there remains an open question whether the combined effects of the spin-orbit coupling and rotation can produce previously unknown types of topological excitations in the ferromagnetic Bose-Einstein condensate. In this work, by using quasi two-dimensional Gross-Pitaevskii equations, we study the ground state structure of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in the toroidal trap. We concentrate on the effects of the spin-orbit coupling and the rotation on the ground states. The numerical results show that in the presence of a toroidal trap, the ground state structure is displayed as half-skyrmion chain with circular distribution. Adjusting the strength of spin-orbit coupling not only changes the number of half-skyrmion in the system, but also controls the symmetry of half-skyrmion with circular distribution. As the rotation frequency increases, the system undergoes the transitions from the plane wave to the half-skyrmion chain with circular distribution, and eventually developing the half-skyrmion phase of triangular lattice. Next, we examine the effect of spin-independent interaction on spin-orbit coupled rotating spinor Bose-Einstein condensate. As the spin-independent interaction increases, the topological defects in the condensate increase due to the variation of the local magnetic order. We also discuss the influence of well shape on the ground state structure. These topological structures can be detected via the time-of-flight absorption imaging technique. The spin-orbit coupled spinor Bose-Einstein condensate in the toroidal trap is an important quantum platform, which not only opens up a new avenue for exploring the exotic topological structures, but also is crucial for realizing the transitions among different ground states. This work paves the way for futureexploring the topological defects and the corresponding dynamical stability in quantum system subjected to the toroidal trap.
      通信作者: 何天琛, 471925407@qq.com
    • 基金项目: 省部级-山西省高等学校科技创新项目(Grant Nos. 2019L0813, 2019L0785, 2019L0808)
      Corresponding author: He Tian-Chen, 471925407@qq.com
    [1]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [2]

    Görlitz A, Gustavson T L, Leanhardt A E, Löw R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 090401Google Scholar

    [3]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [4]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191Google Scholar

    [5]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [6]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602Google Scholar

    [7]

    Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619Google Scholar

    [8]

    Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604Google Scholar

    [9]

    Klausen N N, Bohn J L, Greene C H 2001 Phys. Rev. A 64 053602Google Scholar

    [10]

    Tuchiya S J, Kurihara S 2001 J. Phys. Soc. Jpn. 70 1182Google Scholar

    [11]

    Kasamatsu K, Tsubota M, Ueda M 2005 Int. J. Mod. Phys. B 19 1835Google Scholar

    [12]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66 053604Google Scholar

    [13]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66 053610Google Scholar

    [14]

    Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70 043613Google Scholar

    [15]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403Google Scholar

    [16]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402Google Scholar

    [17]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345Google Scholar

    [18]

    Seo S W, Kang S J, Kwon W J, Shin Y 2015 Phys. Rev. Lett. 115 015301Google Scholar

    [19]

    Seo S W, Kwon W J, Kang S J, Y. Shin Y 2016 Phys. Rev. Lett. 116 185301Google Scholar

    [20]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. Lett. 89 030401Google Scholar

    [21]

    Orlova N V, Kuopanportti P, Milošević M V 2016 Phys. Rev. A 94 023617Google Scholar

    [22]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [23]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314Google Scholar

    [24]

    Wu Z, Zhang L, Sun W, 1 Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [25]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [26]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [27]

    Campbell D L, Juzeliúnas G, Spielman I B 2011 Phys. Rev. A 84 025602Google Scholar

    [28]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan J S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [29]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402Google Scholar

    [30]

    Anderson B M, Spielman I B, Juzeliúnas G 2013 Phys. Rev. Lett. 111 125301Google Scholar

    [31]

    Anderson B M, Juzeliúnas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301Google Scholar

    [32]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [33]

    Ruseckas J, Juzeliúnas G, Öhberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404Google Scholar

    [34]

    Lan Z H, Öhberg P 2014 Phys. Rev. A 89 023630Google Scholar

    [35]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [36]

    Su S W, Liu I K, Tsai Y C, Liu W M, Gou S C 2012 Phys. Rev. A 86 023601Google Scholar

    [37]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [38]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [39]

    Gopalakrishnan S, Martin I, Demler E A 2013 Phys. Rev. Lett. 111 185304Google Scholar

    [40]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602Google Scholar

    [41]

    刘超飞, 万文娟, 张赣源 2013 物理学报 62 200306Google Scholar

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306Google Scholar

    [42]

    Capuzzi P, Jezek D M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145301Google Scholar

    [43]

    Benakli M, Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Europhys. Lett. 46 275Google Scholar

    [44]

    Mason P, Berloff N G 2009 Phys. Rev. A 79 043620Google Scholar

    [45]

    Aftalion A, Mason P 2010 Phys. Rev. A 81 023607Google Scholar

    [46]

    Ryu C, Andersen M F, Cladé P, Natarajan V, Helmerson K, Phillips W D 2007 Phys. Rev. Lett. 99 260401Google Scholar

    [47]

    Abad M, Guilleumas M, Mayol R, Pi M 2010 Phys. Rev. A 81 043619Google Scholar

    [48]

    Zhang X F, Kato M, Han W, Zhang S G, Saito H 2017 Phys. Rev. A 95 033620Google Scholar

    [49]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301Google Scholar

    [50]

    Wang J G, Xu L L, Yang S J 2017 Phys. Rev. A 96 033629Google Scholar

    [51]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633Google Scholar

    [52]

    Liu C F, Yu Y M, Gou S C, Liu W M 2013 Phys. Rev. A 87 063630Google Scholar

    [53]

    Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M, Zhang S G 2016 Phys. Rev. A 94 033629Google Scholar

    [54]

    Li J, Zhang X F, Liu W M 2018 Ann. Phys.-New York 396 87Google Scholar

    [55]

    刘静思, 李吉, 刘伍明 2017 物理学报 66 130305Google Scholar

    Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305Google Scholar

    [56]

    李吉, 刘伍明 2018 物理学报 67 110302Google Scholar

    Li J, Liu W M 2018 Acta Phys. Sin. 67 110302Google Scholar

    [57]

    Urban M 2005 Phys. Rev. A 71 033611Google Scholar

    [58]

    Wang H Y, Zheng Z, Zhuang L, Tai Y H, Shi J S, Liu W M 2020 J. Phys.: Condens. Matter 32 235701Google Scholar

  • 图 1  环形势阱中不同自旋-轨道耦合强度下铁磁87Rb BEC基态粒子数密度分布(第1, 2, 3列)和相位分布(第4, 5, 6列). 改变自旋-轨道耦合强度, 可以调控体系中half-skyrmion数量以及环形排列的对称性 (a) $\kappa = 0.4$; (b) $\kappa = 0.8$; (c) $\kappa = 1.2$; (d) $\kappa = 3$. 该图其余模拟参数选为${\lambda _0} = 3200$, ${\lambda _2} = - 32$, $\varOmega = 0.2$, ${V_0} = 300$, $\sigma = 2$ω = 2π × 250 Hz

    Fig. 1.  Ground state of the rotating ferromagnetic BEC of 87Rb for the different spin-orbit coupling strengths under the toroidal trap. The first, second and third columns show the particle number densities. The fourth, fifth and sixth columns show phase distributions. Changing the strength of spin-orbit coupling can control the number of half-skyrmion in the system and the symmetry of half-skyrmion with circular distribution. The parameters are set as follows: (a) $\kappa = 0.4$; (b) $\kappa = 0.8$; (c) $\kappa = 1.2$; (d) $\kappa = 3$. And the rest of parameters are ${\lambda _0} = 3200$, ${\lambda _2} = - 32$, $\varOmega = 0.2$, ${V_0} = 300$, $\sigma = 2$ and ω = 2π × 250 Hz.

    图 2  不同旋转频率对基态的影响. 随着旋转频率增大, 体系从平面波相转化为环形对称排列的half-skyrmion链相. 第1, 2, 3列描述粒子数密度分布; 第4, 5, 6列表示对应的相位分布 (a) $\varOmega = 0.1$; (b) $\varOmega = 0.2$; (c) $\varOmega = 0.6$; (d) $\varOmega = 0.9$. 该图其余模拟参数选为 ${\lambda _0} = 3200$, ${\lambda _2} = - 32$, ${V_0} = 300$, $\sigma = 2$, $\kappa = 0.4$ω = 2π × 250 Hz

    Fig. 2.  Effects of the different rotation frequency on ground state. With the increase of rotation frequency, the system transforms from plane wave phase to half-skyrmion chain phase with circular symmetry arrangement. The first, second and third columns are the particle number densities. The fourth, the fifth and the sixth columns are the corresponding phase distributions. The parameters are set as follows: (a) $\varOmega = 0.1$; (b) $\varOmega = 0.2$; (c) $\varOmega = 0.6$; (d) $\varOmega = 0.9$. And the other parameters are ${\lambda _0} = 3200$, ${\lambda _2} = - 32$, ${V_0} = 300$, $\sigma = 2$, $\kappa = 0.4$ and ω = 2π × 250 Hz.

    图 3  不同自旋非相关作用和自旋相关作用对基态的影响. 随着自旋非相关作用强度增加, half-skyrmion分布从环形单层排列转化为环形双层排列. 不同自旋相关相互作用对half-skyrmion的数目影响微弱, 仅仅使half-skyrmion环形排列变得更规则 (a1) ${\lambda _0} = $ 1200, ${\lambda _2} = - 32$; (a2) ${\lambda _0} = 4600$, ${\lambda _2} = - 32$; (b1) ${\lambda _0} = 3200$, ${\lambda _2} = - 12$; (b2) ${\lambda _0} = 3200$, ${\lambda _2} = - 9{\rm{6}}$. 该图其余模拟参数选为 $\varOmega = 0.6$, ${V_0} = 300$, $\sigma = 2$, $\kappa = 0.4$ω = 2π × 250 Hz

    Fig. 3.  Effects of the different spin-independent and spin-dependent interactions on ground state. Increasing the strength of spin-independent interaction can induce the transition of half-skyrmion distribution from a circular monolayer arrangement to a circular bilayer arrangement. The influence of different spin-dependent interaction on the number of half-skyrmion is weak, which only makes the ring arrangement of half-skyrmion more regular. The parameters are set as follows: (a1) ${\lambda _0} = 1200$, ${\lambda _2} = - 32$; (a2) ${\lambda _0} = $ 4600, ${\lambda _2} = - 32$; (b1) ${\lambda _0} = 3200$, ${\lambda _2} = - 12$; (b2) ${\lambda _0} = 3200$, ${\lambda _2} = - 9{\rm{6}}$. And the other parameters are $\varOmega = 0.6$, ${V_0} = 300$, $\sigma = 2$, $\kappa = 0.4$ and ω = 2π × 250 Hz.

    图 4  不同势阱宽度和势阱高度对基态的影响. 改变势阱宽度和高度, 可以调控half-skyrmion链的环形分布. 基态粒子数密度分布如1, 2, 3列所示; 对应相位分布如4, 5, 6列所示 (a1) ${V_0} = 300$, $\sigma = 0.8$; (a2) ${V_0} = 300$, $\sigma = 4$; (b1) ${V_0} = 60$, $\sigma = 2$; (b2) ${V_0} = {\rm{6}}00$, $\sigma = 2$. 该图其余模拟参数选为${\lambda _0} = 3200$, ${\lambda _2} = - 32$, $\varOmega = 0.6$, $\kappa = 0.4$ω = 2π × 250 Hz

    Fig. 4.  Effects of the width and the central height of the toroidal potential on ground state. The ring distribution of half-skyrmion chain can be controlled by changing the width and height of potential well. The particle number densities of ground state are shown in the first, second and third columns. The corresponding phase distributions are shown in the fourth, fifth and sixth columns. The parameters are set as follows: (a1) ${V_0} = 300$, $\sigma = 0.8$; (a2) ${V_0} = 300$, $\sigma = 4$; (b1) ${V_0} = 60$, $\sigma = 2$; (b2) ${V_0} = {\rm{6}}00$, $\sigma = 2$. And the other parameters are ${\lambda _0} = 3200$, ${\lambda _2} = - 32$, $\varOmega = 0.6$, $\kappa = 0.4$ and ω = 2π × 250 Hz.

    图 5  不同基态的自旋结构 (a) 对应图2(a)的自旋构型; (b) 对应图1(b)的自旋构型; (c) 对应图2(c)的自旋构型; (d) 对应图2(d)的自旋构型. 图中圆圈区域表示一个half-skyrmion结构. 自旋密度平均值变化范围从–1(蓝色) 到 1(红色)

    Fig. 5.  The spin texture of the ground state: (a) Spin texture corresponding to the Fig. 2(a); (b) spin texture corresponding to the Fig. 1(b); (c) spin texture corresponding to the Fig. 2(c); (d) spin texture corresponding to the Fig. 2(d). The circle region in the graph represents a half-skyrmion structure. Values of the spin density are from –1 (blue) to 1 (red).

  • [1]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [2]

    Görlitz A, Gustavson T L, Leanhardt A E, Löw R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 090401Google Scholar

    [3]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [4]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191Google Scholar

    [5]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [6]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602Google Scholar

    [7]

    Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619Google Scholar

    [8]

    Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604Google Scholar

    [9]

    Klausen N N, Bohn J L, Greene C H 2001 Phys. Rev. A 64 053602Google Scholar

    [10]

    Tuchiya S J, Kurihara S 2001 J. Phys. Soc. Jpn. 70 1182Google Scholar

    [11]

    Kasamatsu K, Tsubota M, Ueda M 2005 Int. J. Mod. Phys. B 19 1835Google Scholar

    [12]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66 053604Google Scholar

    [13]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66 053610Google Scholar

    [14]

    Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70 043613Google Scholar

    [15]

    Schweikhard V, Coddington I, Engels P, Tung S, Cornell E A 2004 Phys. Rev. Lett. 93 210403Google Scholar

    [16]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402Google Scholar

    [17]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345Google Scholar

    [18]

    Seo S W, Kang S J, Kwon W J, Shin Y 2015 Phys. Rev. Lett. 115 015301Google Scholar

    [19]

    Seo S W, Kwon W J, Kang S J, Y. Shin Y 2016 Phys. Rev. Lett. 116 185301Google Scholar

    [20]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. Lett. 89 030401Google Scholar

    [21]

    Orlova N V, Kuopanportti P, Milošević M V 2016 Phys. Rev. A 94 023617Google Scholar

    [22]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [23]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314Google Scholar

    [24]

    Wu Z, Zhang L, Sun W, 1 Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [25]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [26]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [27]

    Campbell D L, Juzeliúnas G, Spielman I B 2011 Phys. Rev. A 84 025602Google Scholar

    [28]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan J S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [29]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402Google Scholar

    [30]

    Anderson B M, Spielman I B, Juzeliúnas G 2013 Phys. Rev. Lett. 111 125301Google Scholar

    [31]

    Anderson B M, Juzeliúnas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301Google Scholar

    [32]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [33]

    Ruseckas J, Juzeliúnas G, Öhberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404Google Scholar

    [34]

    Lan Z H, Öhberg P 2014 Phys. Rev. A 89 023630Google Scholar

    [35]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [36]

    Su S W, Liu I K, Tsai Y C, Liu W M, Gou S C 2012 Phys. Rev. A 86 023601Google Scholar

    [37]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [38]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [39]

    Gopalakrishnan S, Martin I, Demler E A 2013 Phys. Rev. Lett. 111 185304Google Scholar

    [40]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602Google Scholar

    [41]

    刘超飞, 万文娟, 张赣源 2013 物理学报 62 200306Google Scholar

    Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62 200306Google Scholar

    [42]

    Capuzzi P, Jezek D M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145301Google Scholar

    [43]

    Benakli M, Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Europhys. Lett. 46 275Google Scholar

    [44]

    Mason P, Berloff N G 2009 Phys. Rev. A 79 043620Google Scholar

    [45]

    Aftalion A, Mason P 2010 Phys. Rev. A 81 023607Google Scholar

    [46]

    Ryu C, Andersen M F, Cladé P, Natarajan V, Helmerson K, Phillips W D 2007 Phys. Rev. Lett. 99 260401Google Scholar

    [47]

    Abad M, Guilleumas M, Mayol R, Pi M 2010 Phys. Rev. A 81 043619Google Scholar

    [48]

    Zhang X F, Kato M, Han W, Zhang S G, Saito H 2017 Phys. Rev. A 95 033620Google Scholar

    [49]

    Wang H, Wen L H, Yang H, Shi C X, Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301Google Scholar

    [50]

    Wang J G, Xu L L, Yang S J 2017 Phys. Rev. A 96 033629Google Scholar

    [51]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633Google Scholar

    [52]

    Liu C F, Yu Y M, Gou S C, Liu W M 2013 Phys. Rev. A 87 063630Google Scholar

    [53]

    Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M, Zhang S G 2016 Phys. Rev. A 94 033629Google Scholar

    [54]

    Li J, Zhang X F, Liu W M 2018 Ann. Phys.-New York 396 87Google Scholar

    [55]

    刘静思, 李吉, 刘伍明 2017 物理学报 66 130305Google Scholar

    Liu J S, Li J, Liu W M 2017 Acta Phys. Sin. 66 130305Google Scholar

    [56]

    李吉, 刘伍明 2018 物理学报 67 110302Google Scholar

    Li J, Liu W M 2018 Acta Phys. Sin. 67 110302Google Scholar

    [57]

    Urban M 2005 Phys. Rev. A 71 033611Google Scholar

    [58]

    Wang H Y, Zheng Z, Zhuang L, Tai Y H, Shi J S, Liu W M 2020 J. Phys.: Condens. Matter 32 235701Google Scholar

  • [1] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性. 物理学报, 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [2] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化. 物理学报, 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [3] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [4] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论. 物理学报, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [5] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [6] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [7] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [10] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究. 物理学报, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [11] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备. 物理学报, 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [12] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度. 物理学报, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [13] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [14] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿. 物理学报, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [15] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为. 物理学报, 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [16] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [17] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [18] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [19] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为. 物理学报, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [20] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
计量
  • 文章访问数:  9997
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-04-21
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回