搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni60Al20V20中熵合金沉淀过程微扩散相场法模拟

杨一波 赵宇宏 田晓林 侯华

引用本文:
Citation:

Ni60Al20V20中熵合金沉淀过程微扩散相场法模拟

杨一波, 赵宇宏, 田晓林, 侯华

Microscopic phase-field simulation for precipitation process of Ni60Al20V20 medium entropy alloy

Yang Yi-Bo, Zhao Yu-Hong, Tian Xiao-Lin, Hou Hua
PDF
HTML
导出引用
  • 纳米级L12结构的γ有序相形态、析出过程和原子排布等对镍基中熵合金强化具有重要作用. 本文采用微扩散相场动力学模型探究Ni60Al20V20中熵合金沉淀过程微观机理, 以原子占据晶格位置的几率为场变量描述微结构变化, 结合反演算法, 通过分析γ相和θ相原子图像演化, 序参数变化, 体积分数变化等, 探讨了γ(Ni3Al)和θ(DO22)有序相的沉淀机制. 研究结果表明: Ni60Al20V20中熵合金无序相有序化动力学过程中, L10相和DO22相同时析出, L10相逐渐转变为L12-γ相, 而传统Ni75Al7.5V17.5合金沉淀序列是先析出L10相, L10转变为L12相后, DO22相在L12相的反相畴界处析出. L10L12转变时, 面心立方晶格α位被Ni原子占据, β位被Al原子和V共同占据. 原子等成分有序化形成DO22结构θ单相有序畴, 随后失稳分解; L10结构非经典形核, 逐渐转化为L12-γ相并失稳分解. Ni-Al第一近邻原子间相互作用势随温度线性升高, 随长程序参数增加逐渐增加; Ni60Al20V20中熵合金孕育期随温度升高而时间变长. 本文研究适用于Ni-Al-V中熵合金设计.
    Medium entropy alloys have attracted much attention because of their excellent physical and chemical properties. Nano-scaled L12 structure ordered phase plays an important role in strengthening the mechanical properties of medium entropy alloys, and its local atomic arrangement plays a decisive role in yield strength of medium entropy alloys. In this paper, the microscopic mechanism of the precipitation process of Ni60Al20V20 medium entropy alloy is studied by using the micro diffusion phase field dynamics model, in which the probability of atoms to occupy the lattice position is taken as a field variable to describe the configuration of atoms and the morphology of precipitates. In this model, the shape and concentration of precipitate phase, the position and appearance of new phase cannot be set in advance. Combined with the inversion algorithm, the precipitation mechanism of ordered phases of γ' (L12-Ni3Al) and θ (DO22-Ni3V) is discussed by analyzing the evolution of atomic images, the change of order parameters and volume fraction. The result shows that two kinds of ordered phases are precipitated in the kinetical process of disordered phase ordering into Ni60Al20V20 medium entropy alloys, which are of $ {\gamma }' $ phase with L12 structure and of $ \theta $ phase with DO22 structure.The two ordered phases constitute a pseudo binary system. The L10 phase precipitates at the same time as DO22, and the L10 phase gradually transforms into the L12-γ′ phase, while the traditional Ni75Al7.5V17.5 alloy first precipitates L10 phase, and then the DO22 phase precipitates at the boundary of anti-phase domain of L12 phase. In the transition from L10 to L12, α position of fcc lattice is occupied by Ni atom, and the β position is occupied by Al atom and V atom. The congruent ordering of atoms results in the formation of θ single-phase ordered domain of DO22 structure, followed by spinodal decomposition; the non-classical nucleation of L10 structure gradually transforms into L12-γ′ phase and spinodal decomposition. The interaction potential between the first-nearest-neighbor atoms of Ni-Al increases linearly with temperature, and increases gradually with the increase of long range order parameters. The incubation period of Ni60Al20V20 medium entropy alloy lengthens with temperature increasing. This study can be applied to the design of Ni-Al-V medium entropy alloy.
      通信作者: 赵宇宏, zhaoyuhong@nuc.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51774254,51774253,51701187,51674226,51804279,51801189)
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    [1]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [2]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [3]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [4]

    Gludovatz B, Hohenwarter A, Thurston K V, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar

    [5]

    Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar

    [6]

    Chen J, Zhou X Y, Wang W L, Liu B, Lv Y K, Yang W, Xu D P, Liu Y 2018 J. Alloys Compd. 760 15Google Scholar

    [7]

    Agustuaningum M P, Ondicho I, Jodi D E, Park N, Lee U 2019 Mater. Sci. Eng., A 759 633Google Scholar

    [8]

    Jodi D E, Park J, Park N 2019 Mater. Charact. 157 109888Google Scholar

    [9]

    Agustuaningum M P, Yoshid S, Tsuji N, Park N 2019 J. Alloys Compd. 781 866Google Scholar

    [10]

    Zhao Y L, Yang T, Tong Y, Wang J, Luan J H, Jiao Z B, Chen D, Yang Y, Hu A, Liu C T, Kai J J 2017 Acta. Mater. 138 72Google Scholar

    [11]

    Yang K, Wang Y X, Dong W Q, Chen Z, Zhang M Y 2011 Rare Met. Mater. Eng. 40 1605

    [12]

    吴静, 刘永长, 李冲, 伍宇婷, 夏兴川, 李会军 2020 金属学报 56 21Google Scholar

    Wu J, Liu Y C, Li C, Wu Y T, Xia X C, Li H J 2020 Acta Metall. Sin. 56 21Google Scholar

    [13]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar

    [14]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta. Mater. 159 16Google Scholar

    [15]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta. Mater. 148 86Google Scholar

    [16]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. mater. Sci. Technol. 35 1044Google Scholar

    [17]

    Mushongera L T, Amos P G K, School E, Kumar P 2020 J. Mater. Sci. 55 5280Google Scholar

    [18]

    Xia B H, Mei C L, Yu Q, Li Y B 2020 Comput. Method. Appl. Mech. Eng. 363 112795Google Scholar

    [19]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar

    [20]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [21]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M, Liu H, Wang X, Guo Z, Umar A, Hou H 2018 Sci. Adv. Mater. 1012 1793Google Scholar

    [22]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2015 Ultramicroscopy 159 278Google Scholar

    [23]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2013 Nat. Commun. 4 2955Google Scholar

    [24]

    Hou H, Zhao Y H, Zhao Y H 2009 Mat. Sci. Eng. A. 499 204Google Scholar

    [25]

    Wang K, Wang Y X 2020 J. Alloys Compd 824 153923Google Scholar

    [26]

    赵宇宏, 侯华, 任娟娜 2012 中南大学学报 8 81

    Zhao Y H, Hou H, Ren J N 2012 J. Cent. South Univ. 8 81

    [27]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [28]

    马庆爽, 靳玉春, 赵宇宏, 侯华, 王欣然, 王锟 2015 中国有色金属学报 25 1450Google Scholar

    Ma Q S, Jin Y C, Zhao Y H, Hou H, Wang X R, Wang K 2015 Chin. J. Nonferrous Met. 25 1450Google Scholar

    [29]

    Zhang M Y, Liu F, Chen Z, Guo H J, Yue G Q, Yang K 2012 T. Nonferr. Metal. Soc. 22 2439Google Scholar

    [30]

    张静, 陈铮, 王永欣, 童立甲 2015 中国科技论文 10 189

    Zhang J, Chen Z, Wang Y X, Tong L J 2015 China Sciencepaper 10 189

    [31]

    杨坤, 吉楠, 沙婷, 杨放, 王海涛, 陈铮 2017 稀有金属材料与工程 07 125

    Yang K, Ji N, Sha T, Yang F, Wang H T, Chen Z 2017 Rare Metal Mat. Eng. 07 125

    [32]

    Cahn J W, Hilliard J E 1958 Acta Mater. 6 772Google Scholar

    [33]

    Cahn J W, Hilliard J E 1959 Acta Mater. 7 219Google Scholar

    [34]

    Khachaturyan A G 1983 Theory of Structural Trans-formations in Solids (New York: Wiley) pp131–156

    [35]

    Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67Google Scholar

    [36]

    Poduri R, Chen L Q 1998 Acta Mater. 44 4253Google Scholar

    [37]

    Zhao Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [38]

    Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar

    [39]

    Jackson M P, Starink M J, Reed R C 1999 Mater. Sci. Eng., A 264 26Google Scholar

    [40]

    Onaka S, Kobayashi N, Fujii T, Kato M 2002 Int. J. Plast. 10 343Google Scholar

    [41]

    Zhang Y, Chen Z, Cao D D, Zhang J Y, Zhang P, Tao Q, Yang X Q 2019 J. Mater. Res. Technol. 8 726Google Scholar

    [42]

    Wang Y W, Shang S L, Wang Y, Han F B, Darling K A, Wu Y D, Xie X, Senkov O N, Li J S, Hui X D, Dahmen K A, Liaw P K, Kecskes L J, Liu Z K 2017 Npj. Comput. Mater. 3 23Google Scholar

    [43]

    Jodi A E, Park N 2019 Mater. Lett. 255 126528Google Scholar

  • 图 1  1050 K时Ni60Al20V20中熵合金沉淀过程中的原子演化形貌 (a) t = 1000; (b) t = 3000; (c) t = 9000; (d) t = 40000; (e) t = 80000; (f) t = 500000

    Fig. 1.  Atomic evolution morphology of Ni60Al20V20 middle entropy alloy during precipitation at 1050 K: (a) t = 1000; (b) t = 3000; (c) t = 9000; (d) t = 40000; (e) t = 80000; (f) t = 500000

    图 2  L10L12DO22的三维和二维投影结构示意图 (a) L10; (b) L12; (c) DO22

    Fig. 2.  Structural sketches of L10, L12 and DO22: (a) L10; (b) L12; (c) DO22

    图 3  1050 K下Ni75Al7.5V17.5合金沉淀中原子演化形貌 (a) t = 6000; (b) t = 8000; (c) t = 16000

    Fig. 3.  Atom evolution morphology in Ni75Al7.5V17.5 alloy precipitated at 1050 K: (a) t = 6000; (b) t = 8000; (c) t = 16000

    图 4  Ni60Al20V20 中熵合金$ \gamma ' $有序相序参数在不同时刻分布 (a)成分序参数; (b)长程序参数

    Fig. 4.  Order parameter distribution of $ \gamma ' $ ordered phase in Ni60Al20V20 middle entropy alloy at different time: (a) Composition order parameter; (b) long-range order parameter.

    图 6  Ni60Al20V20中熵合金有序相体积分数随时间的变化 (a) L12相体积分数; (b) DO22相体积分数

    Fig. 6.  Variation of volume fraction of ordered phases in Ni60Al20V20 alloy with time: (a) L12 phase; (b) DO22 phase.

    图 7  有序结构中平均序参数随时间的变化 (a)整体变化; (b)局部变化

    Fig. 7.  Average order parameter profiles in the ordered phase: (a) Overall change; (b) local change.

    图 5  Ni60Al20V20中熵合金中θ相内部成分序参数和长程序参数在不同时刻分布 (a)成分序参数; (b)长程序参数

    Fig. 5.  Order parameter distribution in a $ \theta $ particle of Ni60Al20V20 medium entropy alloy at different time: (a) Composition order parameter; (b) long range-order parameter.

    图 8  Ni60Al20V20中熵合金中不同原子位点占据演变 (a) α位; (b)β

    Fig. 8.  Evolutions of different atomic site occupation in Ni60Al20V20 MEA: (a) α site; (b) β site.

    图 9  Ni60Al20V20中熵合金沉淀有序相平均长程序参数随时间变化 (a) $ \gamma ' $相; (b)$ \theta $

    Fig. 9.  Average long-range order parameter curves of $ \gamma ' $ and $ \theta $ phases in Ni60Al20V20 medium entropy alloy: (a) $ {\gamma }' $ phase; (b) $ \theta $ phase.

    图 10  Ni60Al20V20中熵合金原子间相互作用势随长程序参数变化

    Fig. 10.  Variation of interatomic interaction potential in Ni60Al20V20 medium entropy alloy with long-range ordered parameters.

    图 11  Ni60Al20V20中熵合金原子间相互作用势随温度的变化

    Fig. 11.  Temperature dependence of the interatomic interaction potential in Ni60Al20V20 medium entropy alloy.

  • [1]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [2]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [3]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [4]

    Gludovatz B, Hohenwarter A, Thurston K V, Bei H B, Wu Z G, George E P, Ritchie R O 2016 Nat. Commun. 7 10602Google Scholar

    [5]

    Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar

    [6]

    Chen J, Zhou X Y, Wang W L, Liu B, Lv Y K, Yang W, Xu D P, Liu Y 2018 J. Alloys Compd. 760 15Google Scholar

    [7]

    Agustuaningum M P, Ondicho I, Jodi D E, Park N, Lee U 2019 Mater. Sci. Eng., A 759 633Google Scholar

    [8]

    Jodi D E, Park J, Park N 2019 Mater. Charact. 157 109888Google Scholar

    [9]

    Agustuaningum M P, Yoshid S, Tsuji N, Park N 2019 J. Alloys Compd. 781 866Google Scholar

    [10]

    Zhao Y L, Yang T, Tong Y, Wang J, Luan J H, Jiao Z B, Chen D, Yang Y, Hu A, Liu C T, Kai J J 2017 Acta. Mater. 138 72Google Scholar

    [11]

    Yang K, Wang Y X, Dong W Q, Chen Z, Zhang M Y 2011 Rare Met. Mater. Eng. 40 1605

    [12]

    吴静, 刘永长, 李冲, 伍宇婷, 夏兴川, 李会军 2020 金属学报 56 21Google Scholar

    Wu J, Liu Y C, Li C, Wu Y T, Xia X C, Li H J 2020 Acta Metall. Sin. 56 21Google Scholar

    [13]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar

    [14]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta. Mater. 159 16Google Scholar

    [15]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta. Mater. 148 86Google Scholar

    [16]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. mater. Sci. Technol. 35 1044Google Scholar

    [17]

    Mushongera L T, Amos P G K, School E, Kumar P 2020 J. Mater. Sci. 55 5280Google Scholar

    [18]

    Xia B H, Mei C L, Yu Q, Li Y B 2020 Comput. Method. Appl. Mech. Eng. 363 112795Google Scholar

    [19]

    Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Superlattices Microstruct. 129 163Google Scholar

    [20]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [21]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M, Liu H, Wang X, Guo Z, Umar A, Hou H 2018 Sci. Adv. Mater. 1012 1793Google Scholar

    [22]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2015 Ultramicroscopy 159 278Google Scholar

    [23]

    Vogel F, Wanderka N, Balogh Z, Ibrahim M, Stender P, Schmitz G, Banhart J 2013 Nat. Commun. 4 2955Google Scholar

    [24]

    Hou H, Zhao Y H, Zhao Y H 2009 Mat. Sci. Eng. A. 499 204Google Scholar

    [25]

    Wang K, Wang Y X 2020 J. Alloys Compd 824 153923Google Scholar

    [26]

    赵宇宏, 侯华, 任娟娜 2012 中南大学学报 8 81

    Zhao Y H, Hou H, Ren J N 2012 J. Cent. South Univ. 8 81

    [27]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [28]

    马庆爽, 靳玉春, 赵宇宏, 侯华, 王欣然, 王锟 2015 中国有色金属学报 25 1450Google Scholar

    Ma Q S, Jin Y C, Zhao Y H, Hou H, Wang X R, Wang K 2015 Chin. J. Nonferrous Met. 25 1450Google Scholar

    [29]

    Zhang M Y, Liu F, Chen Z, Guo H J, Yue G Q, Yang K 2012 T. Nonferr. Metal. Soc. 22 2439Google Scholar

    [30]

    张静, 陈铮, 王永欣, 童立甲 2015 中国科技论文 10 189

    Zhang J, Chen Z, Wang Y X, Tong L J 2015 China Sciencepaper 10 189

    [31]

    杨坤, 吉楠, 沙婷, 杨放, 王海涛, 陈铮 2017 稀有金属材料与工程 07 125

    Yang K, Ji N, Sha T, Yang F, Wang H T, Chen Z 2017 Rare Metal Mat. Eng. 07 125

    [32]

    Cahn J W, Hilliard J E 1958 Acta Mater. 6 772Google Scholar

    [33]

    Cahn J W, Hilliard J E 1959 Acta Mater. 7 219Google Scholar

    [34]

    Khachaturyan A G 1983 Theory of Structural Trans-formations in Solids (New York: Wiley) pp131–156

    [35]

    Chen L Q, Khachaturyan A G 1991 Scr. Metall. Mater. 25 67Google Scholar

    [36]

    Poduri R, Chen L Q 1998 Acta Mater. 44 4253Google Scholar

    [37]

    Zhao Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [38]

    Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar

    [39]

    Jackson M P, Starink M J, Reed R C 1999 Mater. Sci. Eng., A 264 26Google Scholar

    [40]

    Onaka S, Kobayashi N, Fujii T, Kato M 2002 Int. J. Plast. 10 343Google Scholar

    [41]

    Zhang Y, Chen Z, Cao D D, Zhang J Y, Zhang P, Tao Q, Yang X Q 2019 J. Mater. Res. Technol. 8 726Google Scholar

    [42]

    Wang Y W, Shang S L, Wang Y, Han F B, Darling K A, Wu Y D, Xie X, Senkov O N, Li J S, Hui X D, Dahmen K A, Liaw P K, Kecskes L J, Liu Z K 2017 Npj. Comput. Mater. 3 23Google Scholar

    [43]

    Jodi A E, Park N 2019 Mater. Lett. 255 126528Google Scholar

  • [1] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [2] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [3] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [4] 周康, 袁从龙, 李萧, 王骁乾, 沈冬, 郑致刚. 蓝相液晶指向有序的定域化及微结构制备. 物理学报, 2018, 67(6): 066101. doi: 10.7498/aps.67.20172517
    [5] 田晓林, 赵宇宏, 田晋忠, 侯华. 原子间相互作用势对中Al浓度Ni75AlxV25-x合金沉淀序列的影响. 物理学报, 2018, 67(23): 230201. doi: 10.7498/aps.67.20181366
    [6] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究. 物理学报, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] 路丽霞, 张志东, 周璇. 混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散. 物理学报, 2013, 62(22): 226101. doi: 10.7498/aps.62.226101
    [8] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇. 物理学报, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [9] 严敏逸, 王旦清, 马忠元, 姚尧, 刘广元, 李伟, 黄信凡, 陈坤基, 徐骏, 徐岭. 二维移相光栅光强分布的计算及在制备有序纳米硅阵列中的应用. 物理学报, 2010, 59(5): 3205-3209. doi: 10.7498/aps.59.3205
    [10] 王桂英, 郭焕银, 毛强, 杨刚, 彭振生. V替代Mn对La0.45Ca0.55MnO3电荷有序相及自旋玻璃态的影响. 物理学报, 2010, 59(12): 8883-8889. doi: 10.7498/aps.59.8883
    [11] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [12] 张静, 陈铮, 王永欣, 卢艳丽, 霍进良, 甄辉辉, 赵彦. 微观相场法模拟Ni75Al5.3V19.7 中L12和D022结构反位缺陷的演化. 物理学报, 2009, 58(1): 631-637. doi: 10.7498/aps.58.631
    [13] 王成伟, 马保宏, 李 燕, 陈建彪, 王 建, 刘维民. 有序TiO2纳米管阵列结构的可控生长及其物相研究. 物理学报, 2008, 57(9): 5800-5805. doi: 10.7498/aps.57.5800
    [14] 张丽娇, 蔡建旺, 孟凡斌, 李养贤. 缓冲层Ta对FePt薄膜L10有序相转变及矫顽力的影响. 物理学报, 2006, 55(1): 450-455. doi: 10.7498/aps.55.450
    [15] 贾金锋, 吴凯, 王德峥, 吕斯骅, 赵汝光, 吴思诚. 氧和一氧化碳在有序合金表面Pd{001}c(2×2)-Mn上的共吸附:生成二氧化碳的微观机制. 物理学报, 1995, 44(2): 251-258. doi: 10.7498/aps.44.251
    [16] 许应凡, 陈红, 王文魁. 20m落管中Pd-Ni-P合金的过冷与过饱和固溶相的形成. 物理学报, 1992, 41(7): 1111-1118. doi: 10.7498/aps.41.1111
    [17] 孟祥敏, 胡魁毅, 吴玉琨, 黄锦秀, 崔盛兰. Al65Cu20Co15合金中的新τ相. 物理学报, 1992, 41(12): 1968-1971. doi: 10.7498/aps.41.1968
    [18] 邬钦祟, 王元生, 吴自勤, 何怡贞. 急冷Al80Mn20合金准晶T相的晶化动力学. 物理学报, 1988, 37(5): 796-803. doi: 10.7498/aps.37.796
    [19] 施天生. 淬入空位在AuCu有序化过程中的作用. 物理学报, 1981, 30(3): 361-368. doi: 10.7498/aps.30.361
    [20] 施士元. 代位合金中的空穴扩散和有序化. 物理学报, 1957, 13(4): 245-251. doi: 10.7498/aps.13.245
计量
  • 文章访问数:  6987
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-22
  • 修回日期:  2020-04-21
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回