-
采用基于密度泛函的第一性原理平面波赝势方法计算了Mg-Y-Cu合金中长周期有序相14H和18R(18R(m),18R(t))的形成焓、反应能、电子态密度和电荷密度.计算结果表明,14H和18R相都具有负的形成焓,说明两相都能够由单质转变形成,并且18R相比14H相更容易形成,但14H相具有更好的热力学稳定性;14H和18R相的态密度分布形态和变化趋势相似,它们的成键峰均主要来自于Mg的3s轨道、Mg的2p轨道,Cu的3d轨道和Y的4d轨道的贡献,且在费米能级低能级区域产生了轨道杂化效应.14H相和18R相的成键都具有明显的共价性.通过对各相(0001)面的电荷密度分析表明,14H和18R相中的Cu原子和Y原子之间都形成了共价键,并且14H相的共价性比18R相的共价性更强.The long-period stacking ordered (LPSO) phases in magnesium alloys possess excellent mechanical performances, and have received considerable attention. The strengthening LPSO phases, such as 14H and 18R structures, are found experimentally in some Mg-Y-Cu alloys, which can significantly enhance the mechanical performances of the alloys.However, it is unknown which phase is more stable thermodynamically, and easier to form during the solidification. In this paper, thermodynamic stabilities and electronic characteristics of LPSO phases 14H and 18R (18R(m), 18R(t)) in Mg-Y-Cu alloys are investigated by the first-principles pseudopotential method based on the density functional theory. The present calculations are performed by using Vienna ab-initio simulation package (VASP) with projector-augmented plane wave pseudopotential, and the generalized gradient approximation is used to deal with and describe the exchange-correlation interaction. The plane wave cutoff energy is set to be 360 eV, the forces on all the atoms are less than 0.02 eV/. The k-point meshes of Brillouin zone sampling in a primitive cell are based on the Monkhorst-Pack scheme. The calculated enthalpies of formation indicate that the 14H and 18R phases coexist in Mg-Y-Cu alloys. The 18R phase has a larger absolute value of formation enthalpy, which means that it is easier to form than the 14H phase. The reaction energy is also computed for the transformation from the 18R phase to 14H phase, which shows that the 14H phase is more stable than the 18R phase. The results for density of states (DOS) reveal that the bondings of the 14H and 18R phases occur mainly among the valence electrons of Cu 3d, Y 4d, Mg 3s and Mg 2p orbits while those of Cu 4s, Y 4s and Y 4p orbits are very weak in the whole region. The bonding peaks of the 14H, 18R(m), and 18R(t) phases are localized, and the corresponding hybridization orbits, which are all or part of Mg 3s, Mg 2p, Cu 3d and Y 4d orbits, are determined. At the same time, there are sharp peaks on both sides of the Fermi level of the 14H, 18R(m) and 18R(t) phases, which shows that there exist pseudogaps in those phases. The presence of pseudogap indicates that the bonds in the 14H and 18R phases are noticeable covalent. In addition, the charge densities both on (0 0 0 1) plane of the 14H and 18R phases are analyzed in detail. The results show that the Cu-Y bond exhibits the covalent feature in the 14H and 18R phases, the covalent bonding of the 14H phase is stronger than that of the 18R phase, and it is the key reason that the 14H is more stable than the 18R. The calculated results for thermodynamic stabilities and electronic structures of LPSO phases will provide useful data for analyzing and designing Mg-Y-Cu alloys.
-
Keywords:
- Mg-Y-Cu alloy /
- long-period stacking ordered phases /
- first-principles /
- electronic structure
[1] Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172
[2] Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845
[3] Ono A, Abe E, Itoi T, Hirohashi M, Yamasaki M, Kawamura Y 2008 Trans. Mater. 49 990
[4] Ping D H, Hono K, Kawamura Y, Inoue A 2002 Philos. Mag. Lett. 82 543
[5] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J 2001 J. Mater. Res. 16 1894
[6] Itoi T, Seimiya T, Kawamura Y, Hirohashi M 2004 Scripta Mater. 51 107
[7] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M 2005 Mater. Sci. Eng. A 393 269
[8] Yoshimoto S, Yamasaki M, Kawamura Y 2006 Mater. Trans. 47 959
[9] Egusa D, Abe E 2012 Acta Mater. 60 166
[10] Yamasaki M, Anan T Yoshimoto S, Kawamura Y 2005 Scr. Mater. 53 799
[11] Itoi T, Takahashi K, Moriyama H, Hirohash M 2008 Scr. Mater. 59 1155
[12] Kawamura Y, Kasahara T, Izumi S, Yamasaki M 2006 Scr. Mater. 55 453
[13] Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K 2006 Mater. Trans. 47 1264
[14] Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101 (in Chinese)[嘉明珍, 王红艳, 陈元正, 马存良, 王辉2015物理学报64 087101]
[15] Zhu Y, Li Y C, Wang F H 2016 Acta Phys. Sin. 65 056801 (in Chinese)[朱玥, 李永成, 王福合2016物理学报65 056801]
[16] Zhang H, Shang S, Saal J, Saengdeejing A, Wang Y, Chen L, Liu Z K 2009 Intermetallics 17 878
[17] Shin D, Wolverton C 2010 Acta Mater. 58 531
[18] Datta A, Waghmare U V, Ramamurty U 2008 Acta Mater. 56 2531
[19] Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801
[20] Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737
[21] Kimizuka H, Fronzia M, Ogata S 2013 Scr. Mater. 69 594
[22] Tanaka R, Yuge K 2016 Intermetallics 72 25
[23] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[24] Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[27] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
[28] Sahu B R 1997 Mater. Sci. Eng. B 49 74
[29] Jiang M, Su X, Li H X, Ren Y P, Qin G W 2014 J. Alloys Compd. 593 141
[30] Yi J X, Tang B Y, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys Compd. 509 669
-
[1] Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172
[2] Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845
[3] Ono A, Abe E, Itoi T, Hirohashi M, Yamasaki M, Kawamura Y 2008 Trans. Mater. 49 990
[4] Ping D H, Hono K, Kawamura Y, Inoue A 2002 Philos. Mag. Lett. 82 543
[5] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J 2001 J. Mater. Res. 16 1894
[6] Itoi T, Seimiya T, Kawamura Y, Hirohashi M 2004 Scripta Mater. 51 107
[7] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M 2005 Mater. Sci. Eng. A 393 269
[8] Yoshimoto S, Yamasaki M, Kawamura Y 2006 Mater. Trans. 47 959
[9] Egusa D, Abe E 2012 Acta Mater. 60 166
[10] Yamasaki M, Anan T Yoshimoto S, Kawamura Y 2005 Scr. Mater. 53 799
[11] Itoi T, Takahashi K, Moriyama H, Hirohash M 2008 Scr. Mater. 59 1155
[12] Kawamura Y, Kasahara T, Izumi S, Yamasaki M 2006 Scr. Mater. 55 453
[13] Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K 2006 Mater. Trans. 47 1264
[14] Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101 (in Chinese)[嘉明珍, 王红艳, 陈元正, 马存良, 王辉2015物理学报64 087101]
[15] Zhu Y, Li Y C, Wang F H 2016 Acta Phys. Sin. 65 056801 (in Chinese)[朱玥, 李永成, 王福合2016物理学报65 056801]
[16] Zhang H, Shang S, Saal J, Saengdeejing A, Wang Y, Chen L, Liu Z K 2009 Intermetallics 17 878
[17] Shin D, Wolverton C 2010 Acta Mater. 58 531
[18] Datta A, Waghmare U V, Ramamurty U 2008 Acta Mater. 56 2531
[19] Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801
[20] Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737
[21] Kimizuka H, Fronzia M, Ogata S 2013 Scr. Mater. 69 594
[22] Tanaka R, Yuge K 2016 Intermetallics 72 25
[23] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[24] Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[27] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
[28] Sahu B R 1997 Mater. Sci. Eng. B 49 74
[29] Jiang M, Su X, Li H X, Ren Y P, Qin G W 2014 J. Alloys Compd. 593 141
[30] Yi J X, Tang B Y, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys Compd. 509 669
计量
- 文章访问数: 6577
- PDF下载量: 260
- 被引次数: 0