-
采用基于密度泛函的第一性原理平面波赝势方法计算Mg-Y-Zn合金三元金属间化合物X-Mg12YZn 相和W-Mg3Y2Zn3相的晶格常数、形成焓和电子结构. 形成焓的计算结果表明, X-Mg12YZn相和W-Mg3Y2Zn3相都具有负的形成焓, 并且W-Mg3Y2Zn3相的形成焓更低; 电子结构的计算分析表明, W-Mg3Y2Zn3相成键峰主要来自Mg的2p轨道、Zn的3p轨道和Y的4d轨道的贡献. 而X-Mg12YZn相成键峰主要来自Mg的3s和2p轨道、Zn的3p轨道和Y的4d轨道的贡献. 对W-Mg3Y2Zn3相(011)面和X-Mg12YZn相(0001)面的电荷密度分析表明, 两相中Zn-Y原子间都形成了共价键, 且W-Mg3Y2Zn3相的共价性比X-Mg12YZn相的共价性更强. 在费米能级低能级处, W-Mg3Y2Zn3相具有更多的成键电子数, 决定了W-Mg3Y2Zn3相比X-Mg12YZn相有更好的相稳定性.In the paper, the first-principles pseudopotential plane-wave method based on density functional theory is used to investigate the crystal structures, enthalpies of formation and electronic structures of X-Mg12YZn phase and W-Mg3Y2Zn3 phase in Mg-Y-Zn alloys. The obtained lattice constants of two phases are in good agreement with the available experimental values, which can reasonably reflect the accuracy of theoretical calculation. The calculated enthalpies of formation indicate that the W-Mg3Y2Zn3 and X-Mg12YZn phases have negative enthalpies of formation, which are-0.2787 eV/atom and-0.0268 eV/atom respectively. Both phases can form stable structures relative to single crystals Mg, Y and Zn, and the enthalpy of formation of W-Mg3Y2Zn3 phase is lower than that of X-Mg12YZn phase. The results for density of states show that the bonding of W-Mg3Y2Zn3 phase occurs mainly among the valence electrons of Mg 2p, Zn 3p and Y 4d orbits, the bonding peaks between-2.53 and 0 eV are derived from the hybridization of Mg 2p, Zn 3p and Y 4d orbits, the peaks between 5.07 and 7.51 eV predominantly originate from the hybridization of Mg 2p and Y 4d orbits. However, the bonding of X-Mg12YZn phase is mainly among the valence electrons of Mg 3s, Mg 2p, Zn 3p and Y 4d orbits. The bonding peaks between-2.30 and 0 eV originate mainly from 2p, 3p, and 4d orbit hybridization of Mg, Zn and Y, the peaks between 0 and 2.08 eV originate from the hybridization of Mg 3s, Mg 2p, Zn 3p and Y 4d orbits. At the same time, there is a pseudo-gap near each Fermi level of W-Mg3Y2Zn3 and X-Mg12YZn phases, which implies the presence of covalent bonding in the two phases. In addition, the charge densities respectively on (011) plane of W-Mg3Y2Zn3 phase and (0001) plane of X-Mg12YZn phase are analyzed, and the results indicate that the Zn-Y band exhibits covalent features in W-Mg3Y2Zn3 phase and X-Mg12YZn phase, the covalent bonding of W-Mg3Y2Zn3 phase is stronger than that of X-Mg12YZn phase. Compared with X-Mg12YZn phase, W-Mg3Y2Zn3 phase has a good phase stability attributed to its more bonding electron numbers in a low-energy region of the Fermi level.
-
Keywords:
- Mg-Y-Zn alloy /
- first-principles /
- phase stability /
- electronic structure
[1] Saal James E, Wolverton C 2014 Acta Mater. 68 325
[2] Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 060201(in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 060201]
[3] Rosalie J M, Somekawa H, Singh A, Mukai T 2013 J. Alloys. Compd. 550 114
[4] Shin D, Wolverton C 2010 Scripta Mater. 63 680
[5] Zhang Q, Fu L, Fan T W, Tang B Y, Peng L M, Ding W J 2013 Physica B 416 39
[6] Tane M, Nagai Y, Kimizuka H, Hagihara K, Kawamura Y 2013 Acta Mater. 61 6338
[7] Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd 509 2885
[8] Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172
[9] Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845
[10] Luo Z P, Zhang S Q 2000 J. Mater. Sci. Lett. 19 813
[11] Matsuda M, Ii S, Kawamura Y, IkuharaY, Nishida M 2005 Mater. Sci. Eng. A 393 269
[12] Gröbner J, Kozlov A, Fang X Y, Geng J, Nie J F, Schmid-Fetzer R 2012 Acta Mater. 60 5948
[13] Sahlberg M, Andersson Y 2007 J. Alloys. Compd. 446 134
[14] Zhu Y M, Morton A J, Nie J F 2010 Acta Mater. 58 2936
[15] Zheng S W, Fan G H, Zhang T, Pi H, Xu K F 2014 Acta Phys. Sin. 63 087101(in Chinese) [郑树文, 范广涵, 张涛, 皮辉, 俆开放 2014 物理学报 63 087101]
[16] Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101(in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]
[17] Zhang J T, Li J, Sheng Y 2014 Chin. Phys. B 23 013103
[18] Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101
[19] Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P, Wu W D 2014 Chin. Phys. B 23 037104
[20] Yu Z Q, Xu Z M, Wu X H 2014 Chin. Phys. B 23 107102
[21] Chen P, Li D L, Yi J X, Tang B Y, Peng L M, DingW J 2009 J. Alloys. Compd. 485 672
[22] Tang P Y, Tang B Y, Peng L M, Ding W J 2012 Mater. Chem. Phys. 131 634
[23] Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801
[24] Iikubo S, Matsuda K, Ohtani H 2012 Phys. Rev. B 86 054105
[25] Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737
[26] Wang W Y, Shang S L, Wang Y Darling K A Kecskes L J, Mathaudhu S N, Hui X D, Liu Z K 2014 J. Alloys. Compd. 586 656
[27] Kimizuka H, Fronzia M, Ogata S 2013 Scripta Mater. 69 594
[28] Tang B Y, Wang N, Yu W Y, Zeng X Q, Ding W J 2008 Acta Mater. 56 3353
[29] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
[30] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[31] Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15
[32] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[33] Padezhnova E M, Melnik E V, Miliyevskiy R A 1982 Russ. Metall. 4 185
[34] Zhu Y M , Wayland M , Morton A J, Oh-ishi K, Hono K, Nie J F 2009 Scripta Mater. 60 980
[35] Sahu B R 1997 Mater. Sci. Eng. B 49 74
[36] Yi J X, Tang B Yu, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys. Compd. 509 669
[37] Fu C L, Wang X, Ye Y Y, Ho K M 1999 Intermetallics 7 179
[38] Nylén J, García F J, Mosel B D, Pöttgen R, Häussermann U 2004 Solid State Sci 6 147
-
[1] Saal James E, Wolverton C 2014 Acta Mater. 68 325
[2] Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 060201(in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 060201]
[3] Rosalie J M, Somekawa H, Singh A, Mukai T 2013 J. Alloys. Compd. 550 114
[4] Shin D, Wolverton C 2010 Scripta Mater. 63 680
[5] Zhang Q, Fu L, Fan T W, Tang B Y, Peng L M, Ding W J 2013 Physica B 416 39
[6] Tane M, Nagai Y, Kimizuka H, Hagihara K, Kawamura Y 2013 Acta Mater. 61 6338
[7] Wu M M, Jiang Y, Wang J W, Wu J, Tang B Y, Peng L M, Ding W J 2011 J. Alloys Compd 509 2885
[8] Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172
[9] Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845
[10] Luo Z P, Zhang S Q 2000 J. Mater. Sci. Lett. 19 813
[11] Matsuda M, Ii S, Kawamura Y, IkuharaY, Nishida M 2005 Mater. Sci. Eng. A 393 269
[12] Gröbner J, Kozlov A, Fang X Y, Geng J, Nie J F, Schmid-Fetzer R 2012 Acta Mater. 60 5948
[13] Sahlberg M, Andersson Y 2007 J. Alloys. Compd. 446 134
[14] Zhu Y M, Morton A J, Nie J F 2010 Acta Mater. 58 2936
[15] Zheng S W, Fan G H, Zhang T, Pi H, Xu K F 2014 Acta Phys. Sin. 63 087101(in Chinese) [郑树文, 范广涵, 张涛, 皮辉, 俆开放 2014 物理学报 63 087101]
[16] Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101(in Chinese) [嘉明珍, 王红艳, 陈元正, 马存良, 王辉 2015 物理学报 64 087101]
[17] Zhang J T, Li J, Sheng Y 2014 Chin. Phys. B 23 013103
[18] Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101
[19] Li Z L, An X Y, Cheng X L, Wang X M, Zhang H, Peng L P, Wu W D 2014 Chin. Phys. B 23 037104
[20] Yu Z Q, Xu Z M, Wu X H 2014 Chin. Phys. B 23 107102
[21] Chen P, Li D L, Yi J X, Tang B Y, Peng L M, DingW J 2009 J. Alloys. Compd. 485 672
[22] Tang P Y, Tang B Y, Peng L M, Ding W J 2012 Mater. Chem. Phys. 131 634
[23] Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801
[24] Iikubo S, Matsuda K, Ohtani H 2012 Phys. Rev. B 86 054105
[25] Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737
[26] Wang W Y, Shang S L, Wang Y Darling K A Kecskes L J, Mathaudhu S N, Hui X D, Liu Z K 2014 J. Alloys. Compd. 586 656
[27] Kimizuka H, Fronzia M, Ogata S 2013 Scripta Mater. 69 594
[28] Tang B Y, Wang N, Yu W Y, Zeng X Q, Ding W J 2008 Acta Mater. 56 3353
[29] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
[30] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
[31] Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15
[32] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[33] Padezhnova E M, Melnik E V, Miliyevskiy R A 1982 Russ. Metall. 4 185
[34] Zhu Y M , Wayland M , Morton A J, Oh-ishi K, Hono K, Nie J F 2009 Scripta Mater. 60 980
[35] Sahu B R 1997 Mater. Sci. Eng. B 49 74
[36] Yi J X, Tang B Yu, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys. Compd. 509 669
[37] Fu C L, Wang X, Ye Y Y, Ho K M 1999 Intermetallics 7 179
[38] Nylén J, García F J, Mosel B D, Pöttgen R, Häussermann U 2004 Solid State Sci 6 147
计量
- 文章访问数: 7124
- PDF下载量: 423
- 被引次数: 0