搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究

杨顺杰 李春梅 周金萍

引用本文:
Citation:

磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究

杨顺杰, 李春梅, 周金萍

First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys

Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping
PDF
HTML
导出引用
  • 采用确切的Muffin-Tin轨道结合相干势近似方法, 本文系统计算研究了0 K下, 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金L21和D022相稳定性的规律性及物理机理. 研究结果表明, 0 K下, L21相合金晶格常数、体弹性模量、磁矩和弹性常数均与理论和实验值基本吻合; 铁磁下合金具有L21结构, 随磁无序度(y)的增大, L21相能量相对逐渐增大, 最终由低于转变到高于D022相, 因此, 当y ≥ 0.1(0.2)时, Z = Si和Ge(Z = Ga)的合金具有D022相稳定结构; 随y的增大, L21相的四方剪切弹性模量(C' = (C11C12)/2)还不断软化, 表明无论在能量还是力学角度上, 磁无序都有利于3种合金发生四方晶格变形; 磁无序影响L21和D022相相对稳定性的电子结构机理归因于Jahn-Teller不稳定性效应; 对于L21相Co2CrGa1–xSix和Co2CrGa1–xGex四元铁磁合金, 随x的增大, 总磁矩均按照Slater-Pauling定律单调增大, C'同时也都变硬, 表明Si和Ge掺杂均有利于增强Co2CrGa合金L21相的力学稳定性, 从而抑制了其四方晶格变形的发生.
    Using the exact Muffin-Tin orbital method combined with the coherent potential approximation, the effects of magnetic disordering and alloying effects on the phase stability of L21- and D022-Co2CrZ (Z = Ga, Si, Ge) alloys are systematically investigated at 0 K in the present work. It is shown that at 0 K, the lattice parameter, bulk modulus, magnetic moments, and elastic constants of the studied L21 alloys are in line with the available theoretical and experimental data. In the ferromagnetic state, these alloys possess L21 structure; with the magnetic disordering degree (y) increasing, the energy of the phase increases relatively and finally turns from lower than D022 phase to higher than D022 phase. As a result, when y ≥ 0.1 (0.2), then Z = Si and Ge (Z = Ga) alloys are stabilized by the D022 phase. With y increasing, the tetragonal shear elastic modulus (C' = (C11C12)/2) also turns soft, indicating that the magnetic disorderingis conducive to the lattice tetragonal deformation in the three alloys from both the energetic view and the mechanical view. The electronic origination of the magnetic disordering effect on the stabilities of the L21 and D022 phases can be ascribed to the Jahn-Teller instability effect. In the FM L21-Co2CrGa1–xSix and L21-Co2CrGa1–xGex quaternary alloys, with x increasing, the total magnetic moment increases monotonically according to the Slater-Pauling rule, and C' also stiffens, reflecting that the adding of Si and Ge can promote the mechanical stability of L21-Co2CrGa alloy, thereby depressing the lattice tetragonal deformation.
      通信作者: 李春梅, cmli@synu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174269)资助的课题
      Corresponding author: Li Chun-Mei, cmli@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174269)
    [1]

    Heusler F 1903 Deut. Phys. Ges. 5 219

    [2]

    Ram S, Kanchana V 2013 AIP. Conf. Proc. 1512 1102Google Scholar

    [3]

    AlgethamiO A, 李歌天, 柳祝红, 马星桥 2020 物理学报 69 058102Google Scholar

    Algethami O A, Li G T, Liu Z H, Ma X Q 2020 Acta Phys. Sin. 69 058102Google Scholar

    [4]

    赵昆, 张坤, 王家佳, 于金, 吴三械 2011 物理学报 60 127101Google Scholar

    Zhan K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101Google Scholar

    [5]

    Krenke T, Acet M, Wassermann E F 2006 Phys. Rev. B. 73 174413Google Scholar

    [6]

    杜音, 王文洪, 张小明, 刘恩克, 吴光恒 2012 物理学报 61 147304Google Scholar

    Du Y, Wang W H, Zhang X M, Liu E K, Wu G H 2012 Acta Phys. Sin. 61 147304Google Scholar

    [7]

    Terada M, Fujita Y, Endo K 1974 J. Phys. Soc. 36 620Google Scholar

    [8]

    Ritcey S P, Dunlap R A 1984 J. Appl. Phys. 55 2050Google Scholar

    [9]

    Li Y, Xin Y, Chai L, Ma Y Q, Xu H B 2010 Acta. Mater. 58 3655Google Scholar

    [10]

    Guezlane M, Baaziz H, Ei Haj Hassan F, Charifi Z, Djaballah Y 2016 J. Magn. Magn. Mater. 414 219Google Scholar

    [11]

    Hirata K, Xu X, Omori T, Nagasako M, Kainuma R 2015 J. Alloys Compd. 642 200Google Scholar

    [12]

    Rai D P, Thapa R K 2012 J. Alloys Compd. 542 257Google Scholar

    [13]

    Liu C Q, Li Z, Zhang Y L, Huang Y S, Ye M F, Sun X D, Zhang G J, Gao Y M 2018 Appl. Phys. Lett. 112 211903Google Scholar

    [14]

    Shinpei F, Shoji I, Setsuro A 1989 J. Phys. Soc. Jpn. 58 3657Google Scholar

    [15]

    Manfred W, Jian L, Corneliu C 2001 Scr. Mater. 40 2393

    [16]

    Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K, Kainuma R 2013 Appl. Phys. Lett. 103 164104Google Scholar

    [17]

    Hirata K, Xu X, Omori T, Kainuma R 2019 J. Magn. Magn. Mater. 500 166311Google Scholar

    [18]

    Umetus R Y, Okubo A, Xu X, Kainuma R 2014 J. Alloys Compd. 588 153Google Scholar

    [19]

    Bentouaf A, Mebsout R, Aissa B 2019 J. Alloys Compd. 77 1062

    [20]

    Odaira T, Xu X, Miyake A, Omori T, Tokunaga M, Kainuma R 2018 Scr. Mater. 153 35Google Scholar

    [21]

    Hu Q M, Li C M, Yang R, Kulkova S E, Bazhanov D I, Johansson B, Vitos L 2009 Phys. Rev. B 79 144112Google Scholar

    [22]

    Li C M, Luo H B, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 024201Google Scholar

    [23]

    孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志 2021 物理学报 70 137101Google Scholar

    Sun K C, Liu S, Gao R R, Shi X Y, Liu H Y, Luo H Z 2021 Acta Phys. Sin. 70 137101Google Scholar

    [24]

    Li C M, Zhang Y, Feng W J, Huang R Z, Gao M 2020 Phys. Rev. B 101 054106Google Scholar

    [25]

    Vitos L, Abrilsosv I A, Johansson B 2001 Phys. Rev. Lett. 87 156401Google Scholar

    [26]

    Gyorff B L 1972 Phys. Rev. B 5 2382Google Scholar

    [27]

    Dutta B, Bhandary S, Ghosh S, Sanyal B 2012 Phys. Rev. B 86 024419Google Scholar

    [28]

    Li C M, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 094201Google Scholar

    [29]

    胡岩菲 2020 硕士学位论文 (沈阳: 沈阳师范大学)

    Hu Y F 2020 M. S. Dissertation (Shenyang: Shangyang Normal University)(in Chinese)

    [30]

    张扬 2021硕士学位论文 (沈阳: 沈阳师范大学)

    Zhang Y 2021 M. S. Dissertation (Shenyang: Shangyang Normal University)(in Chinese)

    [31]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London: Spring-Verlag) pp98–121

    [33]

    Seema K, Kumar R 2015 J. Magn. Magn. Mater. 377 70Google Scholar

    [34]

    Ram S, Chauhan M R, Agarwal K, Kanchana V 2011 Phil. Mag. Lett. 91 545Google Scholar

    [35]

    Umetsu R Y, Okubo A, Xu X, Kainuma R 2014 Journal of Alloys and Compounds 588 153Google Scholar

    [36]

    Chen X Q, Podloucky R, Rogl P 2006 J. Appl. Phys. 100 113901Google Scholar

    [37]

    Bai Z Q, Lu Y H, Shen L, Ko V Han G C, Feng Y P 2012 J. Appl. Phys. 111 093911Google Scholar

    [38]

    Rai D P, Shankar A, Sandeep, Ghimire M P, Thapa R K 2012 Material Science Research India 9 155Google Scholar

    [39]

    Li C M, Hu Q M, Yang R, Johansson B, Vitos L 2015 Phys. Rev. B 91 174112Google Scholar

    [40]

    Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A, Ishida K 2010 J. Alloys Compd. 499 1Google Scholar

    [41]

    Galanakis I, Dederichs P H 2002 Phys. Rev. B 66 174429Google Scholar

    [42]

    Roy T, Pandey D, Chakrabarti A 2016 Phys. Rev. B 93 184102Google Scholar

    [43]

    Ayuela A, Enkovaara J, Ullakko K, Nieminen E M 1999 J. Phys. Condens. Matter. 11 2017Google Scholar

  • 图 1  Co2CrZ (Z = Ga, Si, Ge)合金晶格结构: (a) L21相; (b) D022

    Fig. 1.  Crystal structures of Co2CrZ (Z = Ga, Si, Ge) alloys: (a) L21 phase; (b) D022 phase.

    图 2  铁磁状态下L21-Co2CrGa1–xSix和L21-Co2CrGa1–xGex(0 ≤ x ≤ 1)合金晶格常数和体弹性模量随x的变化关系与文献[12, 18, 33, 34, 38]的理论和实验结果的对比 (a) a; (b) B

    Fig. 2.  x-dependence of the lattice constant and bulk modulus of the FM L21-Co2CrGa1–xSix and L21-Co2CrGa1–xGex (0 ≤ x ≤ 1) alloys are in comparison with the available theoretical and experimental data from Refs. [12, 18, 33, 34, 38]: (a) a; (b) B.

    图 3  Co2CrZ(Z = Ga, Si, Ge)合金ΔE随四方晶格c/a的变化关系, 本文ΔE的计算以各合金FM状态下L21相(即y = 0, c/a = 1)的电子总能作为参考值 (a) Z = Ga; (b) Z = Si; (c) Z = Ge

    Fig. 3.  ΔE of Co2CrZ(Z = Ga, Si, Ge) alloys change with respect to the c/a of tetragonal lattice, here, the electronic energy of the FM L21 structure (y = 0, c/a = 1) is as reference for ΔE calculations of each alloy: (a) Z = Ga; (b) Z = Si; (c) Z = Ge.

    图 4  FM状态下Co2CrZ(Z = Ga, Si, Ge)合金总磁矩(μtot)及Co(μCo), Cr(μCr)原子局域磁矩随四方晶格c/a的变化关系、及其顺磁PM状态下μCr绝对值大小随c/a的变化关系 (a) FM-μtot; (b) FM-μCo; (c) FM-μCr; (d) PM-μCr

    Fig. 4.  μtot and μCo and μCr atoms of the FM Co2CrZ(Z = Ga, Si, Ge) alloys change with respect to c/a, together with the trends of μCr-x of the three PM alloys in their absolute values: (a) FM-μtot; (b) FM-μCo; (c) FM-μCr; (d) PM-μCr.

    图 5  FM状态下L21-Co2CrGa1–xSix和L21-Co2CrGa1–xGex (0 ≤ x ≤ 1)合金μtotμCo, μCr原子磁矩随x的变化关系、及其与Slater-Pauling(S-P)定律计算给出μtot-x关系的对比

    Fig. 5.  μtot and μCo, μCr atoms of the FM L21-Co2CrGa1–xSix and L21-Co2CrGa1–xGex (0 ≤ x ≤ 1) alloys change with respect to x, in comparison with their calculated trends of μtot-x according to the Slater-Pauling (S-P) rule.

    图 6  FM状态下L21-Co2CrZ (Z = Ga, Si, Ge)合金单晶弹性常数(C44C '=(C11C12)/2)和A = C44/Cy的变化关系 (a) (b) Z = Ga; (c) (d) Z = Si; (e) (f) Z = Ge

    Fig. 6.  Single-crystal elastic constants (C44 and C ' = (C11C12)/2) and elastic anisotropy (A = C44/C ') of the FM L21-Co2CrZ (Z = Ga, Si, Ge) alloys change with respect to the magnetic disordering degree (y): (a) (b) Z = Ga; (c)(d) Z = Si; (e) (f) Z = Ge.

    图 7  FM状态下L21-Co2CrGa1–xSix和L21-Co2CrGa1–xGex (0 ≤ x ≤ 1)合金单晶弹性常数(C44C ' = (C11C12)/2)、A = C44/CGEx的变化关系 (a) C44x; (b) C 'xAx; (c)Gx; (d) Ex

    Fig. 7.  Single-crystal elastic constants (C11, C12, C44, and C ' = (C11C12)/2), elastic anisotropy (A = C44/C'), polycrystal shear modulus (G), and Young’ modulus (E) of the FM L21-Co2CrGa1–xSix and L21-Co2CrGa1–xGex (0 ≤ x ≤ 1) alloys change with respect to x: (a) C44x; (b) C 'x and Ax; (c) Gx; (d) Ex.

    图 8  FM和PM状态下L21-和D022-Co2CrZ (Z = Ga, Si, Ge)合金电子总态密度(DOS)及Co, Cr和Z原子局域DOS的对比: (a)—(d) Z = Ga; (e)—(h) Z = Si; (i)—(l) Z = Ge

    Fig. 8.  Total electronic density of states (DOS) and local density of states of Co, Cr and Z atoms of the Co2CrZ (Z = Ga, Si, Ge) alloys with both the FM and PM L21 and D022 phases: (a)–(d) Z = Ga; (e)–(h) Z = Si; (i)–(l) Z = Ge.

    表 1  铁磁(FM)和顺磁(PM)状态下L21-Co2CrZ (Z = Ga, Si, Ge)合金晶格常数和体弹性模量的EMTO计算结果与其他源于文献[12, 33-38]理论和实验值的对比

    Table 1.  Lattice constant and bulk modulus of the FM and PM L21-Co2CrZ (Z = Ga, Si, Ge) alloys calculated with the EMTO program are in comparison with the other theoretical and experimental data from Refs. [12, 33-38].

    AlloysPhasesMethodsaB/GPa
    Co2CrGaFM L21EMTO5.736203.5
    The.[12]5.802208.8
    The.[33]5.797204.8
    The.[34]5.720
    Exp.[35]5.760
    PM L21EMTO5.749177.8
    Co2CrSiFM L21EMTO5.651234.3
    The.[36]5.630227.0
    Exp.[37]5.650
    PM L21EMTO5.652202.4
    Co2CrGeFM L21EMTO5.755207.7
    The.[38]5.770250.4
    The.[33]5.754227.1
    PM L21EMTO5.764180.4
    下载: 导出CSV

    表 2  FM状态下L21-Co2CrZ (Z = Ga, Si, Ge)合金单晶弹性常数(C11, C12, C44, C ' = (C11C12)/2)、A = C44/C及多晶GE的EMTO计算结果与源于文献[36, 42]理论值的对比

    Table 2.  Single-crystal elastic constants (C11, C12, C44, and C ' = (C11C12)/2), elastic anisotropy (A = C44/C '), G, and E of the FM L21-Co2CrZ (Z = Ga, Si, Ge) alloys are shown in comparison with the available theoretical results from Refs. [36, 42]

    AlloysMethodsC11/GPaC12/GPaC44/GPaC '/GPaAG/GPaE/GPa
    Co2CrGaEMTO241.27184.65136.9628.314.8471.07190.99
    FPLAPW[42]233.00182.80136.8025.105.4567.30
    Co2CrSiEMTO306.87196.56155.8855.152.83102.04267.17
    FPLAPW[36]29719314552
    Co2CrGeEMTO268.28177.35128.8145.472.8354.06147.74
    下载: 导出CSV
  • [1]

    Heusler F 1903 Deut. Phys. Ges. 5 219

    [2]

    Ram S, Kanchana V 2013 AIP. Conf. Proc. 1512 1102Google Scholar

    [3]

    AlgethamiO A, 李歌天, 柳祝红, 马星桥 2020 物理学报 69 058102Google Scholar

    Algethami O A, Li G T, Liu Z H, Ma X Q 2020 Acta Phys. Sin. 69 058102Google Scholar

    [4]

    赵昆, 张坤, 王家佳, 于金, 吴三械 2011 物理学报 60 127101Google Scholar

    Zhan K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101Google Scholar

    [5]

    Krenke T, Acet M, Wassermann E F 2006 Phys. Rev. B. 73 174413Google Scholar

    [6]

    杜音, 王文洪, 张小明, 刘恩克, 吴光恒 2012 物理学报 61 147304Google Scholar

    Du Y, Wang W H, Zhang X M, Liu E K, Wu G H 2012 Acta Phys. Sin. 61 147304Google Scholar

    [7]

    Terada M, Fujita Y, Endo K 1974 J. Phys. Soc. 36 620Google Scholar

    [8]

    Ritcey S P, Dunlap R A 1984 J. Appl. Phys. 55 2050Google Scholar

    [9]

    Li Y, Xin Y, Chai L, Ma Y Q, Xu H B 2010 Acta. Mater. 58 3655Google Scholar

    [10]

    Guezlane M, Baaziz H, Ei Haj Hassan F, Charifi Z, Djaballah Y 2016 J. Magn. Magn. Mater. 414 219Google Scholar

    [11]

    Hirata K, Xu X, Omori T, Nagasako M, Kainuma R 2015 J. Alloys Compd. 642 200Google Scholar

    [12]

    Rai D P, Thapa R K 2012 J. Alloys Compd. 542 257Google Scholar

    [13]

    Liu C Q, Li Z, Zhang Y L, Huang Y S, Ye M F, Sun X D, Zhang G J, Gao Y M 2018 Appl. Phys. Lett. 112 211903Google Scholar

    [14]

    Shinpei F, Shoji I, Setsuro A 1989 J. Phys. Soc. Jpn. 58 3657Google Scholar

    [15]

    Manfred W, Jian L, Corneliu C 2001 Scr. Mater. 40 2393

    [16]

    Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K, Kainuma R 2013 Appl. Phys. Lett. 103 164104Google Scholar

    [17]

    Hirata K, Xu X, Omori T, Kainuma R 2019 J. Magn. Magn. Mater. 500 166311Google Scholar

    [18]

    Umetus R Y, Okubo A, Xu X, Kainuma R 2014 J. Alloys Compd. 588 153Google Scholar

    [19]

    Bentouaf A, Mebsout R, Aissa B 2019 J. Alloys Compd. 77 1062

    [20]

    Odaira T, Xu X, Miyake A, Omori T, Tokunaga M, Kainuma R 2018 Scr. Mater. 153 35Google Scholar

    [21]

    Hu Q M, Li C M, Yang R, Kulkova S E, Bazhanov D I, Johansson B, Vitos L 2009 Phys. Rev. B 79 144112Google Scholar

    [22]

    Li C M, Luo H B, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 024201Google Scholar

    [23]

    孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志 2021 物理学报 70 137101Google Scholar

    Sun K C, Liu S, Gao R R, Shi X Y, Liu H Y, Luo H Z 2021 Acta Phys. Sin. 70 137101Google Scholar

    [24]

    Li C M, Zhang Y, Feng W J, Huang R Z, Gao M 2020 Phys. Rev. B 101 054106Google Scholar

    [25]

    Vitos L, Abrilsosv I A, Johansson B 2001 Phys. Rev. Lett. 87 156401Google Scholar

    [26]

    Gyorff B L 1972 Phys. Rev. B 5 2382Google Scholar

    [27]

    Dutta B, Bhandary S, Ghosh S, Sanyal B 2012 Phys. Rev. B 86 024419Google Scholar

    [28]

    Li C M, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 094201Google Scholar

    [29]

    胡岩菲 2020 硕士学位论文 (沈阳: 沈阳师范大学)

    Hu Y F 2020 M. S. Dissertation (Shenyang: Shangyang Normal University)(in Chinese)

    [30]

    张扬 2021硕士学位论文 (沈阳: 沈阳师范大学)

    Zhang Y 2021 M. S. Dissertation (Shenyang: Shangyang Normal University)(in Chinese)

    [31]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London: Spring-Verlag) pp98–121

    [33]

    Seema K, Kumar R 2015 J. Magn. Magn. Mater. 377 70Google Scholar

    [34]

    Ram S, Chauhan M R, Agarwal K, Kanchana V 2011 Phil. Mag. Lett. 91 545Google Scholar

    [35]

    Umetsu R Y, Okubo A, Xu X, Kainuma R 2014 Journal of Alloys and Compounds 588 153Google Scholar

    [36]

    Chen X Q, Podloucky R, Rogl P 2006 J. Appl. Phys. 100 113901Google Scholar

    [37]

    Bai Z Q, Lu Y H, Shen L, Ko V Han G C, Feng Y P 2012 J. Appl. Phys. 111 093911Google Scholar

    [38]

    Rai D P, Shankar A, Sandeep, Ghimire M P, Thapa R K 2012 Material Science Research India 9 155Google Scholar

    [39]

    Li C M, Hu Q M, Yang R, Johansson B, Vitos L 2015 Phys. Rev. B 91 174112Google Scholar

    [40]

    Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A, Ishida K 2010 J. Alloys Compd. 499 1Google Scholar

    [41]

    Galanakis I, Dederichs P H 2002 Phys. Rev. B 66 174429Google Scholar

    [42]

    Roy T, Pandey D, Chakrabarti A 2016 Phys. Rev. B 93 184102Google Scholar

    [43]

    Ayuela A, Enkovaara J, Ullakko K, Nieminen E M 1999 J. Phys. Condens. Matter. 11 2017Google Scholar

  • [1] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] 周金萍, 李春梅, 姜博, 黄仁忠. Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究. 物理学报, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [3] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [4] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [5] 翟东, 韦昭, 冯志芳, 邵晓红, 张平. 铜钨合金高温高压性质的第一性原理研究. 物理学报, 2014, 63(20): 206501. doi: 10.7498/aps.63.206501
    [6] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究. 物理学报, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [7] 赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械. Heusler合金Mn2NiGa的第一性原理研究. 物理学报, 2012, 61(21): 213102. doi: 10.7498/aps.61.213102
    [8] 马天慧, 庄志萍, 任玉兰. LiBX2 (B=Ga, In; X= S, Se, Te)光学性质与力学性质的第一性原理计算. 物理学报, 2012, 61(19): 197101. doi: 10.7498/aps.61.197101
    [9] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究. 物理学报, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [10] 苏锐, 龙瑶, 姜胜利, 何捷, 陈军. 外部压力下β相奥克托金晶体弹性性质变化的第一性原理研究. 物理学报, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [11] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [12] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [13] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算. 物理学报, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [14] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [15] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [16] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [17] 徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅. 纳米尺度下Sm-Co合金体系中相组成与相稳定性的研究. 物理学报, 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [18] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] 周晶晶, 高 涛, 张传瑜, 张云光. Al的微观组态与LaNi3.75Al1.25的结构和弹性第一性原理研究. 物理学报, 2007, 56(4): 2311-2317. doi: 10.7498/aps.56.2311
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  5306
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-01-24
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-05-20

/

返回文章
返回