搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

15 MA Z箍缩装置真空磁绝缘传输线损失电流的电路模拟

龚振洲 魏浩 范思源 孙凤举 吴撼宇 邱爱慈

引用本文:
Citation:

15 MA Z箍缩装置真空磁绝缘传输线损失电流的电路模拟

龚振洲, 魏浩, 范思源, 孙凤举, 吴撼宇, 邱爱慈

Circuit simulation of current loss in magnetically insulated transmission line system in 15- MA Z-pinch driver

Gong Zhen-Zhou, Wei Hao, Fan Si-Yuan, Sun Feng-Ju, Wu Han-Yu, Qiu Ai-Ci
PDF
HTML
导出引用
  • 采用TL-code电路编码方法, 建立了15 MA Z箍缩装置多层圆盘锥磁绝缘传输线的全电路模型, 分析了外磁绝缘传输线、汇流柱和内磁绝缘传输线三个区域电流损失特性. 外磁绝缘传输线磁绝缘形成过程的空间电荷损失持续时间约30 ns, 对负载电流影响小. 进入磁绝缘稳态时, 外磁绝缘传输线末端鞘层电子流损失约300 kA. 汇流柱区域电流损失与电极等离子体运动速率密切相关, 当等离子体运动速率为21 cm/μs时, 负载峰值电流时刻损失电流约4 MA. 内磁绝缘传输线电流损失取决于阳极离子流种类, 电流损失在负载峰值电流时刻之后, 损失电流约2.1 MA. 当15 MA装置驱动长度2 cm、半径2 cm、质量3 mg丝阵负载时, 绝缘堆峰值电流约18 MA, 负载峰值电流约13.5 MA、峰值时间(0—100%)约为100 ns.
    In this paper, a transmission line circuit model of a magnetically insulated transmission line(MITL) system is developed for a 15-MA Z-pinch driver. The current loss characteristics of multi-level MITL and the ion emission due to the expansion of anode and cathode plasma in the post hole vacuum convolute(PHC) and inner-MITL region are analyzed. The spatiotemporal distribution of current loss of the outer-MITL and ion current of the PHC and inner-MITL of the 15 MA driver are obtained. The results show that the first electron emission happens at the end of constant-impedance MITL and the beginning of constant-gap MITL, and the end of constant-gap MITL firstly achieves fully magnetic insulation. Electron emission occurs at the start of load current and its duration is about 30 ns, which is short for a single pulse and has little effect on the rising edge nor peak value of the load current. The waveform of the electron flow varying with time resembles a saddle shape, whose amplitude first goes up, then comes down, and increases again. The electron flow current decreases from upstream to downstream in constant-gap MITL in space. The starting time of the loss current of the PHC is synchronized with the gap closing time. The loss current amplitude increases rapidly, reaching 4 MA at the peak load current time and 6.5 MA in the end. In the inner-MITL region, the main positive ion species are protons and oxygen 2+. At the beginning, the ion loss current of protons is larger than that of oxygen 2+, and then the protons are quickly magnetically insulated due to the small charge-to-mass ratio. The ion loss current of the inner-MITL region mainly increases after the peak load current time, and its peak value is 2.1 MA. Given the input conditions, the stack is going to deliver current of about 18 MA, the hold voltage is about 2.3 MV, and the peak load current is about 13.5 MA.
      通信作者: 魏浩, weihaoyy@sina.com
    • 基金项目: 国家自然科学基金(批准号: 51790524, 11975186)资助的课题.
      Corresponding author: Wei Hao, weihaoyy@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51790524, 11975186).
    [1]

    Stygar W A, Corcoran P A, Ives H C, Spieman R B, Douglas J W, Whitney B A, Mostrom M A, Wagoner T C, Speas C S, Gilliland T L, Allshouse G A, Clark R E, Donovan G L, Hughes T P, Humphreys D R, Jaramillo D M, Johnson M F, Kellogg J W, Leeper R J, Long F W, Martin T H, Mulville T D, Pelock M D, Peyton B P, Poukey J W, Smith J W, Van De Valde D M, Wavrik R W 2009 Phys. Rev. ST Accel. Beams 12 120401Google Scholar

    [2]

    Hutsel B T, Corcoran P A, Cuneo M E, Gomez M R, Hess M H, Hinshelwood D D, Jennings C A, Laity G R, Lamppa D C, McBride R D, Moore J K, Myers A, Rose D V, Slutz S A, Stygar W A, Waisman E M, Welch D R, Whitney B A 2018 Phys. Rev. Accel. Beams 21 030401Google Scholar

    [3]

    Spielman R B, Froula D H, Brent G, Campbell E M, Reisman D B, Savage M E, Shoup Ⅲ M J, Stygar W A, Wisher M L 2017 Matter Radiat. Extremes 5 204Google Scholar

    [4]

    Spielman R B, Reisman D B 2019 Matter Radiat. Extremes 4 027402Google Scholar

    [5]

    宋盛义, 王文斗, 曹文彬, 林其文, 冯晓晖, 孙承纬 2004 强激光与粒子束 16 800

    Song S Y, Wang W D, Cao W B, Lin Q W, Feng X H, Sun C W 2004 High Power Laser and Partical Beams 16 800

    [6]

    Hu Y X, Qiu A C, Wang L P, Huang T, Cong P T, Zhang X J, Li Y, Zeng Z Z, Sun T P, Lei T S, Wu H Y, Guo N, Han J J 2011 Plasma Sci. Technol 13 631Google Scholar

    [7]

    Zou W K, Guo F, Chen L, Song S Y, Wang M, Xie W P, Deng J J 2014 Phys. Rev. ST Accel. Beams 17 110401Google Scholar

    [8]

    邹文康, 郭 帆, 王贵林, 陈 林, 卫 兵, 宋盛义 2015 高电压技术 41 1844

    Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Volat. Engineer. 41 1844

    [9]

    薛 创, 丁宁, 孙顺凯, 肖德龙, 张杨, 黄俊, 宁成, 束小建 2014 物理学报 63 125207Google Scholar

    Xue C, Ding N, Sun S K, Xiao D L, Zhang Y, Huang J, Ning C, Su X J 2014 Acta Phys. Sin. 63 125207Google Scholar

    [10]

    薛创, 丁宁, 张杨, 肖德龙, 孙顺凯, 宁成, 束小建 2016 强激光与粒子束 28 015014Google Scholar

    Xue C, Ding N, Zhang Y, Xiao D L, Sun S K, Ning C, Su X J 2016 High power laser and Partical Beams 28 015014Google Scholar

    [11]

    毛重阳, 薛创, 肖德龙, 丁宁 2020 强激光与粒子束 32 025004

    Mao C Y, Xue C, Xiao D L, Ding N 2020 High power laser and Partical Beams 32 025004 (in Chinese)

    [12]

    VanDevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar

    [13]

    Stinnett R W, Stanley T 1982 J. Appl. Phys. 53 3819Google Scholar

    [14]

    Stinnett R W, Palmer M, Spielman R B 1983 IEEE Trans. Plasma Sci. 11 216Google Scholar

    [15]

    Presura R, Bauer B S, Esaulov A, Fuelling S, Ivanov V, Le Galloudec N, Makhin V, Siemon R E, Sotnikov V I, Wirtz R, Astanovitskiy A, Batie S, Faretto H, Le Galloudec B, Oxner A, Angelova M, Laca P, Guzzetta S, Keely S, Rogowski S 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p859

    [16]

    Ivanov V V, Laca P J, Bauer B S, Presura R, Sotnikov V I, Astanovitskiy A L, Galloudec B L, Glassman J, Wirtz R A 2004 IEEE Trans. Plasma Sci. 32 1843Google Scholar

    [17]

    Bakshaev Y L, Bartov A V, Blinov P I, Chernenko A S, Dan’ko S A, Kalinin Y G, Kingsep A S, Korolev V D, Mizhiritskii V I, Smirnov V P, Shashkov A Y, Sasorov A Y, Tkachenko S I 2007 Plasma Phys. Rep. 33 259Google Scholar

    [18]

    Rose D V, Welch D R, Hughes T P, Clark R E 2008 Phys. Rev. ST Accel. Beams 11 060401Google Scholar

    [19]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E, Gomez M R, Hughes T P, Pointon T D, Seidel D B 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar

    [20]

    Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E 2015 Phys. Rev. ST Accel. Beams 18 030402Google Scholar

    [21]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Accel. Beams 20 010401Google Scholar

    [22]

    Waisman E M, Desjarlais M P, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 030402Google Scholar

    [23]

    Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar

    [24]

    Bennett N, Welch D R, Jenning C A, Yu E, Hess M H, Hutsel B T, Laity G, Moore J K, Rose D V, Peterson K, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 120401Google Scholar

    [25]

    Rose D V, Waisman E M, Desjarlais M P, Cuneo M E, Hutsel B T, Welch D R, Bennett N, Laity G R 2020 Phys. Rev. Accel. Beams 23 080401Google Scholar

    [26]

    Bennett N, Welch D R, Laity G, Rose D V, Cuneo M E 2021 Phys. Rev. Accel. Beams 24 060401Google Scholar

    [27]

    Samokhin A A 2010 Plasma Phys. Rep. 36 149Google Scholar

    [28]

    Ottinger P F, Schumer J W, Allen R J, Commisso R J 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p849

    [29]

    Stygar W A, Wagoner T C, Ives H C, Corcoran P A, Cuneo M E, Douglas J W, Gilliland T L, Mazarakis M G, Ramiriez J J, Seamen J F, Seidel D B, Spielman R B 2006 Phys. Rev. ST Accel. Beams 9 090401Google Scholar

    [30]

    Pointon T D, Savage M E 2005 IEEE Pulsed Power Conference, Monterey, California, June 13–17, 2005 p151

    [31]

    Stygar W A, Rosenthal S E, Ives H C, Wagoner T C, Allshouse G O, Androlewicz K E, Donovan G L, Fehl D L, Frese M H, Gilliland T L, Johnson M F, Mills J A, Reisman D B, Reynolds P G, Speas C S, Spielman R B, Struve K W, Toor A, Waisman E M 2008 Phys. Rev. ST Accel. Beams 11 120401Google Scholar

    [32]

    Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K. Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L, Woodworth J R 2015 Phys. Rev. ST Accel. Beams 18 110401Google Scholar

    [33]

    Cuneo M E 1999 IEEE Trans. Dielectrics Electrical Insul. 6 469Google Scholar

    [34]

    Bloomberg H W, Lampe M, Colombant D G 1980 J. Appl. Phys. 51 5277

    [35]

    邹文康, 陈林, 周良骥, 王勐, 杨礼兵, 谢卫平, 邓建军 2011 物理学报 60 115204Google Scholar

    Zou W K, Chen L, Zhou L J, Wang M, Yang L B, Xie W P, Deng J J 2011 Acta Phys. Sin. 60 115204Google Scholar

  • 图 1  15 MA装置中心汇流区示意图

    Fig. 1.  Cross-sectional view of the central converge region of the 15 MA driver.

    图 2  15 MA装置4层MITL电气和结构参数随半径变化规律 (a) 真空电感(包括绝缘堆和外MITL); (b) 真空阻抗; (c) 间隙距离

    Fig. 2.  The outer-MITL parameters of the 15 MA driver: (a) The vacuum inductance (including the stack and MITL); (b) the vacuum impedance; (c) the gap distance.

    图 3  15 MA装置MITL电路模型

    Fig. 3.  TL-code model of the MITL system of the 15 MA driver.

    图 4  15 MA装置绝缘堆参数 (a) 绝缘堆电流; (b) 绝缘堆电压

    Fig. 4.  The stack parameters of the 15 MA driver: (a) The stack current; (b) the stack voltage.

    图 5  D层MITL不同传输线单元电参数 (a) 阳极电压; (b) 电场强度; (c) 空间电荷流损失

    Fig. 5.  The MITL parameters of several elements within the D Level: (a) Line voltage; (b) electric field; (c) electron-loss current.

    图 6  鞘层电子流对比(负载聚爆时刻约355 ns) (a) D层MITL恒间隙各段; (b) 4层MITL恒间隙末端及4层之和

    Fig. 6.  The comparison of the electron flow current in each element (the Z-pinch stagnation approximately equal to 355 ns): (a) Each element of the constant-gap MITL segment of the D-level; (b) the end of the four level constant-gap MITL and the sum of the flow current.

    图 7  汇流柱电参数 (a)等效损失电阻; (b) 汇流柱电压及损失电流对比

    Fig. 7.  Electrical parameters of the PHC: (a) The loss resistance; (b) comparison of the voltage and the loss current of the PHC.

    图 8  内MITL电流损失

    Fig. 8.  The current loss in the inner-MITL region.

    图 9  中心汇流区典型位置电流损失对比

    Fig. 9.  Comparison of the loss current in the typical locations of the central converge region.

    图 10  中心汇流区典型位置电流对比

    Fig. 10.  Comparison of the current in the typical locations of the central converge region.

    表 1  电路模型输入参数

    Table 1.  The input parameters of the circuit model.

    物理量符号单位数值
    阴极表面电子发射阈值[1]EtkV/cm240
    调制空间电荷流前沿的电场强度[27]E2kV/cm300
    外MITL等离子体运动速率[1]vocpcm/μs2.5
    PHC等离子体运动速率[23]vpcm/μs21
    内MITL等离子体运动速率[2]vicm/μs3.7
    鞘层电子流再俘获系数[2]krt0.074
    PHC放电通道面积[23]Apcm215
    内MITL电极面积Aicm2100
    PHC放电通道电阻率[23]ηΩ·m0.035
    PHC初始间隙距离[1]dpicm1.14
    内MITL初始间隙距离diicm0.6
    有无空间电荷增强效应的
    离子运动速度之比[2]
    kvi1.3
    进入内MITL并在间隙积累的
    鞘层电子流比例[2]
    fen, im0.02
    下载: 导出CSV
  • [1]

    Stygar W A, Corcoran P A, Ives H C, Spieman R B, Douglas J W, Whitney B A, Mostrom M A, Wagoner T C, Speas C S, Gilliland T L, Allshouse G A, Clark R E, Donovan G L, Hughes T P, Humphreys D R, Jaramillo D M, Johnson M F, Kellogg J W, Leeper R J, Long F W, Martin T H, Mulville T D, Pelock M D, Peyton B P, Poukey J W, Smith J W, Van De Valde D M, Wavrik R W 2009 Phys. Rev. ST Accel. Beams 12 120401Google Scholar

    [2]

    Hutsel B T, Corcoran P A, Cuneo M E, Gomez M R, Hess M H, Hinshelwood D D, Jennings C A, Laity G R, Lamppa D C, McBride R D, Moore J K, Myers A, Rose D V, Slutz S A, Stygar W A, Waisman E M, Welch D R, Whitney B A 2018 Phys. Rev. Accel. Beams 21 030401Google Scholar

    [3]

    Spielman R B, Froula D H, Brent G, Campbell E M, Reisman D B, Savage M E, Shoup Ⅲ M J, Stygar W A, Wisher M L 2017 Matter Radiat. Extremes 5 204Google Scholar

    [4]

    Spielman R B, Reisman D B 2019 Matter Radiat. Extremes 4 027402Google Scholar

    [5]

    宋盛义, 王文斗, 曹文彬, 林其文, 冯晓晖, 孙承纬 2004 强激光与粒子束 16 800

    Song S Y, Wang W D, Cao W B, Lin Q W, Feng X H, Sun C W 2004 High Power Laser and Partical Beams 16 800

    [6]

    Hu Y X, Qiu A C, Wang L P, Huang T, Cong P T, Zhang X J, Li Y, Zeng Z Z, Sun T P, Lei T S, Wu H Y, Guo N, Han J J 2011 Plasma Sci. Technol 13 631Google Scholar

    [7]

    Zou W K, Guo F, Chen L, Song S Y, Wang M, Xie W P, Deng J J 2014 Phys. Rev. ST Accel. Beams 17 110401Google Scholar

    [8]

    邹文康, 郭 帆, 王贵林, 陈 林, 卫 兵, 宋盛义 2015 高电压技术 41 1844

    Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Volat. Engineer. 41 1844

    [9]

    薛 创, 丁宁, 孙顺凯, 肖德龙, 张杨, 黄俊, 宁成, 束小建 2014 物理学报 63 125207Google Scholar

    Xue C, Ding N, Sun S K, Xiao D L, Zhang Y, Huang J, Ning C, Su X J 2014 Acta Phys. Sin. 63 125207Google Scholar

    [10]

    薛创, 丁宁, 张杨, 肖德龙, 孙顺凯, 宁成, 束小建 2016 强激光与粒子束 28 015014Google Scholar

    Xue C, Ding N, Zhang Y, Xiao D L, Sun S K, Ning C, Su X J 2016 High power laser and Partical Beams 28 015014Google Scholar

    [11]

    毛重阳, 薛创, 肖德龙, 丁宁 2020 强激光与粒子束 32 025004

    Mao C Y, Xue C, Xiao D L, Ding N 2020 High power laser and Partical Beams 32 025004 (in Chinese)

    [12]

    VanDevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar

    [13]

    Stinnett R W, Stanley T 1982 J. Appl. Phys. 53 3819Google Scholar

    [14]

    Stinnett R W, Palmer M, Spielman R B 1983 IEEE Trans. Plasma Sci. 11 216Google Scholar

    [15]

    Presura R, Bauer B S, Esaulov A, Fuelling S, Ivanov V, Le Galloudec N, Makhin V, Siemon R E, Sotnikov V I, Wirtz R, Astanovitskiy A, Batie S, Faretto H, Le Galloudec B, Oxner A, Angelova M, Laca P, Guzzetta S, Keely S, Rogowski S 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p859

    [16]

    Ivanov V V, Laca P J, Bauer B S, Presura R, Sotnikov V I, Astanovitskiy A L, Galloudec B L, Glassman J, Wirtz R A 2004 IEEE Trans. Plasma Sci. 32 1843Google Scholar

    [17]

    Bakshaev Y L, Bartov A V, Blinov P I, Chernenko A S, Dan’ko S A, Kalinin Y G, Kingsep A S, Korolev V D, Mizhiritskii V I, Smirnov V P, Shashkov A Y, Sasorov A Y, Tkachenko S I 2007 Plasma Phys. Rep. 33 259Google Scholar

    [18]

    Rose D V, Welch D R, Hughes T P, Clark R E 2008 Phys. Rev. ST Accel. Beams 11 060401Google Scholar

    [19]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E, Gomez M R, Hughes T P, Pointon T D, Seidel D B 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar

    [20]

    Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E 2015 Phys. Rev. ST Accel. Beams 18 030402Google Scholar

    [21]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Accel. Beams 20 010401Google Scholar

    [22]

    Waisman E M, Desjarlais M P, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 030402Google Scholar

    [23]

    Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar

    [24]

    Bennett N, Welch D R, Jenning C A, Yu E, Hess M H, Hutsel B T, Laity G, Moore J K, Rose D V, Peterson K, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 120401Google Scholar

    [25]

    Rose D V, Waisman E M, Desjarlais M P, Cuneo M E, Hutsel B T, Welch D R, Bennett N, Laity G R 2020 Phys. Rev. Accel. Beams 23 080401Google Scholar

    [26]

    Bennett N, Welch D R, Laity G, Rose D V, Cuneo M E 2021 Phys. Rev. Accel. Beams 24 060401Google Scholar

    [27]

    Samokhin A A 2010 Plasma Phys. Rep. 36 149Google Scholar

    [28]

    Ottinger P F, Schumer J W, Allen R J, Commisso R J 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p849

    [29]

    Stygar W A, Wagoner T C, Ives H C, Corcoran P A, Cuneo M E, Douglas J W, Gilliland T L, Mazarakis M G, Ramiriez J J, Seamen J F, Seidel D B, Spielman R B 2006 Phys. Rev. ST Accel. Beams 9 090401Google Scholar

    [30]

    Pointon T D, Savage M E 2005 IEEE Pulsed Power Conference, Monterey, California, June 13–17, 2005 p151

    [31]

    Stygar W A, Rosenthal S E, Ives H C, Wagoner T C, Allshouse G O, Androlewicz K E, Donovan G L, Fehl D L, Frese M H, Gilliland T L, Johnson M F, Mills J A, Reisman D B, Reynolds P G, Speas C S, Spielman R B, Struve K W, Toor A, Waisman E M 2008 Phys. Rev. ST Accel. Beams 11 120401Google Scholar

    [32]

    Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K. Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L, Woodworth J R 2015 Phys. Rev. ST Accel. Beams 18 110401Google Scholar

    [33]

    Cuneo M E 1999 IEEE Trans. Dielectrics Electrical Insul. 6 469Google Scholar

    [34]

    Bloomberg H W, Lampe M, Colombant D G 1980 J. Appl. Phys. 51 5277

    [35]

    邹文康, 陈林, 周良骥, 王勐, 杨礼兵, 谢卫平, 邓建军 2011 物理学报 60 115204Google Scholar

    Zou W K, Chen L, Zhou L J, Wang M, Yang L B, Xie W P, Deng J J 2011 Acta Phys. Sin. 60 115204Google Scholar

  • [1] 龚振洲, 魏浩, 范思源, 洪亚平, 吴撼宇, 邱爱慈. 15 MA Z箍缩装置真空磁绝缘传输线鞘层电子流分析. 物理学报, 2023, 72(3): 035204. doi: 10.7498/aps.72.20221901
    [2] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [3] 邹建龙, 沈瑶, 马西奎. 终端含NMOS反相器传输线系统中的时空复杂行为分析. 物理学报, 2012, 61(17): 170514. doi: 10.7498/aps.61.170514
    [4] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [5] 刘腊群, 刘大刚, 王学琼, 邹文康, 杨超. 带螺旋支撑杆的同轴磁绝缘传输线三维数值模拟的实现. 物理学报, 2012, 61(16): 162901. doi: 10.7498/aps.61.162901
    [6] 周军, 张鹏飞, 杨海亮, 孙江, 孙剑峰, 苏兆锋, 刘万东. 同轴圆柱形磁绝缘传输线前沿损失与工作电压关系. 物理学报, 2012, 61(24): 245203. doi: 10.7498/aps.61.245203
    [7] 徐航, 王安帮, 韩晓红, 马建议, 王云才. 混沌信号相关法测量电介质传输线的断点及阻抗失配. 物理学报, 2011, 60(9): 090503. doi: 10.7498/aps.60.090503
    [8] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [9] 张利伟, 王佑贞, 赫丽, 许静平. 基于传输线的单负材料双层结构的隧穿性质. 物理学报, 2010, 59(9): 6106-6110. doi: 10.7498/aps.59.6106
    [10] 高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安. 左手材料微结构构型的传输线比拟模型. 物理学报, 2010, 59(12): 8566-8573. doi: 10.7498/aps.59.8566
    [11] 万健如, 刘英培, 周海亮. 基于传输线理论电力高频脉冲在电缆上的传输与反射研究. 物理学报, 2010, 59(5): 2948-2951. doi: 10.7498/aps.59.2948
    [12] 刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛纲. 磁绝缘传输线中心汇流区数值模拟的实现. 物理学报, 2010, 59(3): 1643-1650. doi: 10.7498/aps.59.1643
    [13] 吴振军, 王丽芳, 廖承林. 分析端接频变负载的多导体传输线FDTD新方法. 物理学报, 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [14] 李有权, 付云起, 张辉, 袁乃昌. 基于传输线模型的高阻表面反射相位分析. 物理学报, 2009, 58(6): 3949-3954. doi: 10.7498/aps.58.3949
    [15] 李海洋, 张冶文, 王蓬春, 李贵泉. 基于谐振结构的左右手传输线的奇异传输性质. 物理学报, 2007, 56(11): 6480-6485. doi: 10.7498/aps.56.6480
    [16] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象. 物理学报, 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
    [17] 王忠纯. 介观耗散传输线的量子化. 物理学报, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
    [18] 曾令儒. 特种截面传输线特性阻抗计算的一种方法. 物理学报, 1982, 31(6): 709-721. doi: 10.7498/aps.31.709
    [19] 曾令儒. 平行板-内正方柱耦合传输线的特性阻抗. 物理学报, 1982, 31(6): 840-846. doi: 10.7498/aps.31.840
    [20] 林为干, 钟祥礼. 传输线特性阻抗的一个新计算方法. 物理学报, 1963, 19(4): 249-258. doi: 10.7498/aps.19.249
计量
  • 文章访问数:  5045
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-01-19
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-20

/

返回文章
返回