搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heusler合金Mn2NiGa的第一性原理研究

赵建涛 赵昆 王家佳 余新泉 于金 吴三械

引用本文:
Citation:

Heusler合金Mn2NiGa的第一性原理研究

赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械

A first principles study on Mn2NiGa Heusler alloy

Zhao Jian-Tao, Zhao Kun, Wang Jia-Jia, Yu Xin-Quan, Yu Jin, Wu San-Xie
PDF
导出引用
  • 运用基于密度泛函理论的投影缀加波方法研究了Heusler合金Mn2NiGa的四方变形, 对立方和四方结构的磁矩、电子结构、弹性常数及声子谱进行了计算和分析. Mn原子是Mn2NiGa总磁矩的主要贡献者, 但Mn(A)、Mn(B)原子磁矩的值不等且呈反平行耦合, 因而Mn2NiGa合金在两种状态下均表现为亚铁磁结构. 四方变形中, Mn2NiGa在c/a=0.94和c/a=1.27处出现总能的局域极小值和局域最小值, 分别对应一个稳定的马氏体. 弹性常数的计算结果显示, Mn2NiGa的立方结构不满足立方相稳定性判据, 四方结构(c/a=0.94和c/a=1.27)的弹性常数满足相应的稳定性判据. 立方结构声子谱中存在虚频, 而四方结构(c/a=0.94和c/a=1.27)则不存在虚频, 验证了Mn2NiGa四方结构比立方结构稳定. c/a=1.27的四方结构Mn2NiGa转变为c/a=1.0的立方结构的相变温度在315 K左右.
    Tetragonal distortion of Mn2NiGa Heusler alloy is calculated by first-principles based on density functional theory with projector augmented wave pseudopotential, and the magnetism, electronic structure, elastic constants and phonon frequencies are also calculated and analyzed. The contribution of the spin magnetic moments of Mn atom to the total moment is largest for Mn2NiGa, and the Mn2NiGa alloy shows ferrimagnetism in these two cases, owning to the antiparallel but unbalanced magnetic moments of Mn (A) atom and Mn (B) atom. Analysis of tetragonal distortion shows that there is a local minimum total energy at c/a=0.94 and c/a=1.27, which corresponds to a stable martensitic phase. Elastic constants of Mn2NiGa reveal that cubic structure does not satisfy stability conditions, but tetragonal structure (c/a=0.94 and c/a=1.27) does. The imaginary values of phonon frequencies in cubic structures validate that tetragonal structure (c/a=0.94 and c/a=1.27) of Mn2NiGa is more stable than cubic structure. The phase transition temperature of c/a=1.27 tetragonal structure converting to cubic structure is about 315 K.
    [1]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chamlyakov Y I 2007 Appl. Phys. Lett. 90 172505

    [2]

    Aparna C, Barman S R 2009 Appl. Phys. Lett. 94 161908

    [3]

    Chatterjee S, Giri S, Majumdar S 2008 Phys. Rev. B 77 22440

    [4]

    Luo H Z, Zhang H W, Zhu Z Y, Ma L, Xu S F, Wu G H, Zhu X X, Jiang C B, Xu H B 2008 J. Appl. Phys. 103 083908

    [5]

    Yusuke O, Mikihiko O, Yasuo A 2009 J. Appl. Phys. 105 07C920

    [6]

    Galanakis I, Mavropoulos P H, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765

    [7]

    Ullakko K, Huang J K, Kantner C, O' Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [8]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [9]

    Fujita A, Fukamichi K, Gejima E, Kainunm R, Ishida K 2001 Appl. Phys. Lett. 77 3054

    [10]

    Wuttig M, Li J, Craciuneseu C 2001 Scripta Mater. 44 2393

    [11]

    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainum R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Wan J F, Wang J N 2005 Physica B 355 172

    [14]

    Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 12779

    [15]

    Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435

    [16]

    Hafner J 2008 J. Comput. Chem. 29 2044

    [17]

    Kresse G Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Torrent M, Jollet F, Bottin F 2008 Comput. Mater. Sci. 42 337

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Helmholdt R B, Buschow K H J 1987 J. Less-Comm. Met. 128 167

    [21]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 0521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 0521]

    [22]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [23]

    Alippi P, Marcus P M, Scheffler M 1997 Phys. Rev. Lett. 78 3892

    [24]

    Marcus P M, Alippi P 1998 Phys. Rev. B 57 1971

    [25]

    Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2011 物理学报 60 127101]

    [26]

    Trambly L G, Nguyen M D, M L 1995 Phys. Rev. B 52 7920

    [27]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [28]

    Rached H, Rached D, Khenata R, Reshak Ali H, Rabah M 2009 Phys. Status Solidi B 246 1580

    [29]

    Ozdemir Kart S, Uludogan M, Karaman, Cagin T 2008 Phys. Stat. Sol. A 205 1026

    [30]

    Wallace D C 1972 Thermodynamics of Crystals (New York: John Wiley & Sons) p39

    [31]

    Jona F, Marcus P M 2001 Phys. Rev. B 63 094113

    [32]

    Yuan P F, Zhu W J, Xu J A, Liu S J, Jing F Q 2010 Acta Phys. Sin. 59 8755(in Chinese) [原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦 2010 物理学报 59 8755]

    [33]

    Hao Y J, Zhang L, Chen X R 2008 Phys. Rev. B 78 134101

    [34]

    Mei Z G, Shang S L, Wang Y 2009 Phys. Rev. B 79 134102

    [35]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665

    [36]

    Wang Y, Ahuja R, Johansson B 2004 Int. J. Quantum. Chem. 96 501

    [37]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) p258

    [38]

    Liu G D 2007 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘国栋 2007 博士学位论文 (重庆: 重庆大学)]

  • [1]

    Karaman I, Basaran B, Karaca H E, Karsilayan A I, Chamlyakov Y I 2007 Appl. Phys. Lett. 90 172505

    [2]

    Aparna C, Barman S R 2009 Appl. Phys. Lett. 94 161908

    [3]

    Chatterjee S, Giri S, Majumdar S 2008 Phys. Rev. B 77 22440

    [4]

    Luo H Z, Zhang H W, Zhu Z Y, Ma L, Xu S F, Wu G H, Zhu X X, Jiang C B, Xu H B 2008 J. Appl. Phys. 103 083908

    [5]

    Yusuke O, Mikihiko O, Yasuo A 2009 J. Appl. Phys. 105 07C920

    [6]

    Galanakis I, Mavropoulos P H, Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765

    [7]

    Ullakko K, Huang J K, Kantner C, O' Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966

    [8]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [9]

    Fujita A, Fukamichi K, Gejima E, Kainunm R, Ishida K 2001 Appl. Phys. Lett. 77 3054

    [10]

    Wuttig M, Li J, Craciuneseu C 2001 Scripta Mater. 44 2393

    [11]

    Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K 2001 Appl. Phys. Lett. 79 3290

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainum R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Wan J F, Wang J N 2005 Physica B 355 172

    [14]

    Jakob G, Elmers H J 2007 J. Magn. Magn. Mater. 310 12779

    [15]

    Liu G D, Dai X F, Yu S Y, Zhu Z Y, Chen J L, Wu G H 2006 Phys. Rev. B 74 054435

    [16]

    Hafner J 2008 J. Comput. Chem. 29 2044

    [17]

    Kresse G Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Torrent M, Jollet F, Bottin F 2008 Comput. Mater. Sci. 42 337

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Helmholdt R B, Buschow K H J 1987 J. Less-Comm. Met. 128 167

    [21]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 0521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 0521]

    [22]

    Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407

    [23]

    Alippi P, Marcus P M, Scheffler M 1997 Phys. Rev. Lett. 78 3892

    [24]

    Marcus P M, Alippi P 1998 Phys. Rev. B 57 1971

    [25]

    Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2011 Acta Phys. Sin. 60 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2011 物理学报 60 127101]

    [26]

    Trambly L G, Nguyen M D, M L 1995 Phys. Rev. B 52 7920

    [27]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [28]

    Rached H, Rached D, Khenata R, Reshak Ali H, Rabah M 2009 Phys. Status Solidi B 246 1580

    [29]

    Ozdemir Kart S, Uludogan M, Karaman, Cagin T 2008 Phys. Stat. Sol. A 205 1026

    [30]

    Wallace D C 1972 Thermodynamics of Crystals (New York: John Wiley & Sons) p39

    [31]

    Jona F, Marcus P M 2001 Phys. Rev. B 63 094113

    [32]

    Yuan P F, Zhu W J, Xu J A, Liu S J, Jing F Q 2010 Acta Phys. Sin. 59 8755(in Chinese) [原鹏飞, 祝文军, 徐济安, 刘绍军, 经福谦 2010 物理学报 59 8755]

    [33]

    Hao Y J, Zhang L, Chen X R 2008 Phys. Rev. B 78 134101

    [34]

    Mei Z G, Shang S L, Wang Y 2009 Phys. Rev. B 79 134102

    [35]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665

    [36]

    Wang Y, Ahuja R, Johansson B 2004 Int. J. Quantum. Chem. 96 501

    [37]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) p258

    [38]

    Liu G D 2007 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [刘国栋 2007 博士学位论文 (重庆: 重庆大学)]

  • [1] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究. 物理学报, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [4] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [5] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [6] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [7] 贾红英, 代学芳, 王立英, 刘然, 王啸天, 李朋朋, 崔玉亭, 王文洪, 吴光恒, 刘国栋. CuHg2Ti型Ti2Cr基合金的电子结构、能隙起源和磁性研究. 物理学报, 2014, 63(10): 107103. doi: 10.7498/aps.63.107103
    [8] 朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒. Heusler合金Fe2CrGa的磁性与结构. 物理学报, 2012, 61(2): 027502. doi: 10.7498/aps.61.027502
    [9] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [10] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [11] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [12] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [13] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒. Co50Fe25-xMnxSi25系列合金的结构、磁性和半金属性研究. 物理学报, 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [14] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [15] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算. 物理学报, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [16] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [17] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [18] 刘国栋, 王新强, 代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒. Fe和Co元素在铁磁性形状记忆合金Mn50Ni25-xFe(Co)xGa25中的作用. 物理学报, 2006, 55(9): 4883-4887. doi: 10.7498/aps.55.4883
    [19] 张 炜, 千正男, 隋 郁, 刘玉强, 苏文辉, 张 铭, 柳祝红, 刘国栋, 吴光恒. Heusler合金Co2TiSn的磁性与输运性能. 物理学报, 2005, 54(10): 4879-4883. doi: 10.7498/aps.54.4879
    [20] 千正男, 隋 郁, 刘玉强, 柳祝红, 刘国栋, 张 铭, 崔玉亭, 陈京兰, 吴光恒. 四元Heusler合金NiMnFeGa中Fe原子的磁性贡献. 物理学报, 2003, 52(9): 2304-2308. doi: 10.7498/aps.52.2304
计量
  • 文章访问数:  4136
  • PDF下载量:  795
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-05-14
  • 刊出日期:  2012-11-05

Heusler合金Mn2NiGa的第一性原理研究

  • 1. 东南大学材料科学与工程学院, 南京 211189;
  • 2. 东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189;
  • 3. 南京大学化学化工学院, 南京 210093

摘要: 运用基于密度泛函理论的投影缀加波方法研究了Heusler合金Mn2NiGa的四方变形, 对立方和四方结构的磁矩、电子结构、弹性常数及声子谱进行了计算和分析. Mn原子是Mn2NiGa总磁矩的主要贡献者, 但Mn(A)、Mn(B)原子磁矩的值不等且呈反平行耦合, 因而Mn2NiGa合金在两种状态下均表现为亚铁磁结构. 四方变形中, Mn2NiGa在c/a=0.94和c/a=1.27处出现总能的局域极小值和局域最小值, 分别对应一个稳定的马氏体. 弹性常数的计算结果显示, Mn2NiGa的立方结构不满足立方相稳定性判据, 四方结构(c/a=0.94和c/a=1.27)的弹性常数满足相应的稳定性判据. 立方结构声子谱中存在虚频, 而四方结构(c/a=0.94和c/a=1.27)则不存在虚频, 验证了Mn2NiGa四方结构比立方结构稳定. c/a=1.27的四方结构Mn2NiGa转变为c/a=1.0的立方结构的相变温度在315 K左右.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回