搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni2Cu基Heusler合金的电子结构、弹性参数与马氏体相变的第一性原理研究

王家旭 张一心 马圣然 李昊泽 罗鸿志

引用本文:
Citation:

Ni2Cu基Heusler合金的电子结构、弹性参数与马氏体相变的第一性原理研究

王家旭, 张一心, 马圣然, 李昊泽, 罗鸿志

First principles study of electronic structure, mechanical properties and possible martensitic transformation in Ni2Cu-based Heusler alloys

WANG Jiaxu, ZHANG Yixin, MA Shengran, LI Haoze, LUO Hongzhi
PDF
HTML
导出引用
  • Heusler合金中的马氏体相变因其具有的诸多物性成为金属功能材料领域的研究热点. 本文对一类新的Ni2CuZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) Heusler合金的原子占位、电子结构、弹性参数和马氏体相变进行了第一性原理研究. 结果表明该系列材料中Cu均择优占据Heusler合金晶格B位从而形成L21结构, 其基态为顺磁态. Ni2CuZ发生四方晶格畸变后马氏体基态能量低于立方奥氏体, 相变能够发生, 这与材料电子结构的Jahn-Teller效应和奥氏体晶格的力学不稳定性有关, 也使其成为一种潜在的Heusler型形状记忆合金. 计算发现Ni2CuZ奥氏体与马氏体相能量差ΔEM与主族元素Z关系密切, Z属同一主族时, ΔEMZ原子序数增加单调增大, Z属同一周期时, 变化趋势恰好相反. 这与Heusler型形状记忆合金中通常的价电子浓度e/a或电子密度n判据并不一致, 但可以通过材料剪切模量$ C' $以及弹性常数C44Z元素的周期性变化解释. 该结果揭示了Heusler合金中马氏体相变与弹性参数之间的紧密联系, 可以将其作为预测新型形状记忆合金和分析材料物性的一个重要指标.
    Ni2–based Heusler alloys have received increasing attention due to their shape memory effects and the relevant application properties. It is interesting to explore new Ni2–based shape memory alloys with novel properties. In this work, the site preference, electronic structure, elastic parameters and martensitic transformation of new Ni2Cu-based Heusler alloys Ni2CuZ (Z = Al, Ga, In, Si, Ge, Sn and Sb) are investigated theoretically. Between the two highly-ordered structures of Heusler alloys, Ni2CuZ alloy tends to crystallize in the L21 structure with Cu atom entering the B site in the cubic lattice. In contrast, the XA structure is higher in energy and lower in stability. This is different from the usual rule that transition metal atoms with more valence electrons tend to occupy the A, C sites at first and can be related to the strong covalent hybridization between Ni and main group elements Z in L21 type Ni2CuZ.Ni2CuZ martensites are all lower in energy than the corresponding austenites, which makes them candidates for shape memory alloys. This can be explained by the Jahn-Teller effect characterized by the reduced states near EF in the DOS structure and the mechanical instability of the cubic austenite lattice. The martensite-austenite energy difference ΔEM is strongly influenced by main group elements Z. When Z are in the same group, the ΔEM increases with their atomic number increasing, but when Z are in the same period, an opposite trend is observed. The ΔEM can be regarded as a driving force for the martensitic transformation: a larger ΔEM corresponds to a higher martensitic transformation TM. In Heusler alloys, electron concentration e/a and electron density n are usually used to discuss the variation of TM. An increase of e/a or n tends to increase TM. However, this is in discrepancy with the results in Ni2CuZ, which can be explained by using, the new factors, the negative shear modulus $ C' $ and softening of the elastic constant C44 and their variations with Z elements. These results reveal the close relation between the martensitic transformation and mechanical parameters and indicate that they are important factors to predict new shape memory alloys and analyse their properties in Heusler alloys. It is also found that the Young’s modulus and shear modulus increase and Poisson’s ratio decreases after the martensitic transformation. Thus, the Ni2CuZ martensite has higher stiffness and rigidity but lower ductility than the austenite.
  • 图 1  Ni2CuAl合金L21XA晶体结构的示意图

    Fig. 1.  Crystal structure diagrams of L21 and XA type Ni2CuAl.

    图 2  L21XA结构Ni2CuZ的总能量随晶格常数的变化关系. 曲线中能量零点为各成分L21结构的基态能量

    Fig. 2.  Variation of total energy with lattice constant for L21 and XA type Ni2CuZ alloys. Ground state total energy of the L21 structure is set as the zero point of each curve.

    图 3  L21XA结构Heusler合金的电荷差分密度对比 (a) Ni2CuSi; (b) Ni2CuGe; (c) Ni2CuSn

    Fig. 3.  CDD plots of Heusler alloys with L21 and XA structure: (a) Ni2CuSi; (b) Ni2CuGe; (c) Ni2CuSn.

    图 4  Ni2CuZ合金马氏体相的结构优化曲线, 图中各曲线零点为对应成分的立方奥氏体能量($ {c {/ } a} = 1 $)

    Fig. 4.  Structural optimization results of different Ni2CuZ martensite, the zero point of each curve is set as the total energy of the corresponding austenite state.

    图 5  Ni2CuZ合金的马氏体与奥氏体能量差ΔEM, 价电子浓度e/a, 电子密度n以及合金奥氏体弹性参数$ C' $与C44随主族元素Z的变化关系

    Fig. 5.  Variation of ΔEM, valence electron concentration e/a, electron density n, and mechanical parameters $ C' $ and C44 with main group element Z in Ni2CuZ alloys.

    图 6  Ni2CuZ合金奥氏体(a)与马氏体(b)的态密度; (c)两者在费米能级附近态密度的对比

    Fig. 6.  Calculated DOS of Ni2CuZ austenite (a) and martensite (b); (c) compares the enlargement of the austenite and martensite DOS around EF.

    表 1  计算得到的L21型Ni2CuZ合金的平衡晶格常数a, 各弹性参数以及L21XA两结构的能量差ΔE

    Table 1.  Equilibrium lattice constant a, total energy difference ΔE between the L21 and XA structure and mechanical properties of L21 type Ni2CuZ alloys.

    成分 a ΔE/(eV·f.u.–1) C11/GPa C12/GPa C44/GPa B/GPa G/GPa E/GPa ν B/GV
    Ni2CuAl 5.72 –0.29 145.9 176.3 124.3 166.1 11.0 32.4 0.47 2.42
    Ni2CuGa 5.73 –0.28 150.2 181.0 109.6 170.7 5.4 16.0 0.48 2.87
    5.75* 141.3* 177.8* 110.4* 165.6* –0.81* 0.34* 2.78*
    Ni2CuIn 6.00 –0.20 123.9 149.5 88.8 140.9 3.8 11.4 0.49 2.93
    Ni2CuSi 5.63 –0.46 192.8 195.6 93.8 194.6 26.1 74.9 0.44 3.49
    Ni2CuGe 5.74 –0.40 167.9 171.5 92.8 170.3 25.1 71.9 0.43 3.10
    Ni2CuSn 5.99 –0.33 143.3 149.7 89.4 147.6 21.9 62.8 0.43 2.82
    Ni2CuSb 5.99 –0.45 149.9 148.2 76.3 148.8 24.1 68.7 0.42 3.23
    注: *数据引自参考文献[25]
    下载: 导出CSV

    表 2  计算得到的Ni2CuZ马氏体的晶格常数Vc/a, 价电子浓度e/a, 电子密度n和马氏体与奥氏体能量差ΔEM

    Table 2.  Equilibrium lattice parameters V and c/a, valence electron concentration e/a, electron density n and energy difference ΔEM calculated for Ni2CuZ martensite.

    成分V3c/ae/an–3ΔEM/(eV·f.u.–1)
    Ni2CuAl187.151.248.500.727–0.082
    Ni2CuGa188.131.268.500.723–0.090
    Ni2CuIn216.001.288.500.630–0.101
    Ni2CuSi178.451.288.750.785–0.032
    Ni2CuGe189.121.308.750.740–0.047
    Ni2CuSn214.921.308.750.650–0.049
    Ni2CuSb214.921.189.000.670–0.003
    下载: 导出CSV

    表 3  计算得到的Ni2CuZ马氏体相的弹性参数

    Table 3.  Calculated mechanical parameters of Ni2CuZ martensite.

    成分 C11/GPa C33/GPa C44/GPa C66/GPa C12/GPa C13/GPa B/GPa G/GPa E/GPa ν
    Ni2CuAl 243.3 196.1 118.9 86.4 100.9 148.6 164.3 71.4 187.1 0.31
    Ni2CuGa 236.8 198.2 104.1 76.7 112.5 150.6 166.6 64.8 172.1 0.33
    Ni2CuIn 194.6 178.8 80.2 65.4 104.8 126.2 142.5 54.1 144.2 0.33
    Ni2CuSi 232.9 234.5 95.8 83.9 155.7 165.4 186.0 63.0 169.7 0.35
    Ni2CuGe 220.8 203.7 77.1 69.2 135.3 157.5 171.7 51.9 141.3 0.36
    Ni2CuSn 189.8 176.7 77.8 42.7 83.6 123.8 134.8 49.3 131.7 0.34
    Ni2CuSb 217.3 153.1 76.6 16.1 79.9 147.3 148.4 28.7 81.0 0.41
    下载: 导出CSV
  • [1]

    Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966Google Scholar

    [2]

    Yin R, Wendler F, Krevet B, Kohl M 2016 Sens. Actuators, A 246 48Google Scholar

    [3]

    Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M, 2010 Nat. Mater. 9 478Google Scholar

    [4]

    Zhang L, Zhang J, Li K L, He LQ, Zhou C, Wang D, Yang S, Li S, Wang D Y 2022 Acta Mater. 239 118245Google Scholar

    [5]

    Gottschall T, Skokov K P, Scheibel F, Acet M, Zavareh M G, Skourski Y, Wosnitza J, Farle M, Gutfleisch O 2016 Phys. Rev. Appl. 5 024013Google Scholar

    [6]

    Kalache A, Selle S, Schnelle W, Fecher G H, Höche T, Felser C, Markou A 2018 Phys. Rev. Mater. 2 084407Google Scholar

    [7]

    Zhang Q Q, Liu Z H, Tan J G, Ma X Q, Cheng Z X 2019 Intermetallics 108 87Google Scholar

    [8]

    Rashidi S, Ehsani M H, Shakouri M, Karimi N 2021 J. Magn. Magn. Mater. 537 168112Google Scholar

    [9]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 2008 ; 49 295

    [10]

    Mendonça A A, Jurado J F, Stuard S J, Silva L E L, Eslava G G, Cohen L F, Ghivelder L, Gomes A M 2018 J. Alloys Compd. 738 509Google Scholar

    [11]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424Google Scholar

    [12]

    Huang X M, Zhao Y, Yan H L, Jia N, Yang B, Li Z B, Zhang Y D, Esling C, Zhao X, Ren Q Y, Tong X, Zuo L 2023 Scr. Mater. 234 115544Google Scholar

    [13]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957Google Scholar

    [14]

    Pfeuffer L, Gràcia-Condal A, Gottschall T, Koch D, Faske T, Bruder E, Lemke J, Taubel A, Ener S, Scheibel F, Durst K, Skokov K P, Mañosa L, Planes A, Gutfleisch O 2021 Acta Mater. 217 117157Google Scholar

    [15]

    Chen F, Sánchez Llamazares J L, Sánchez-Valdés C F, Chen F H, Li Z B, Tong Y X, Li L 2020 J. Alloys Compd. 825 154053Google Scholar

    [16]

    Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar

    [17]

    Buchelnikov V D, Zagrebin M A, Sokolovskiy V V 2018 J. Magn. Magn. Mater. 459 78Google Scholar

    [18]

    Ma Y X, Ni Z N, Luo H Z, Liu H Y, Meng F B, Liu E K, Wang W H, Wu G H 2017 Intermetallics 81 1Google Scholar

    [19]

    Li J Q, Li H Z, Jiang X X, Liu H Y, Luo H Z, Meng F B 2024 Appl. Phys. Lett. 124 222404Google Scholar

    [20]

    Zhang K, Tan C, E. Guo E J, Feng Z C, Zhu J C, Y. X. Tong Y X, Cai W 2018 J. Mater. Chem. C 6 5228Google Scholar

    [21]

    Liu B H, Luo H Z, Xin Y P, Zhang Y J, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2015 Solid State Commun. 222 23Google Scholar

    [22]

    Kreiner Kalache G A, Hausdorf S, Alijani V, Qian J F, Shan G C, Burkhardt U, Ouardi S, Felser C 2014 Z. Anorg. Allg. Chem. 640 738Google Scholar

    [23]

    Yang M, Hu Y L, Li X N, Li Z M, Zheng Y H, Li N J, Dong C 2022 J. Mater. Res. Technol. 17 1246Google Scholar

    [24]

    Lakharwal P, Ahmed H, Chaudhary V, Patel P C, Kandpal H C, Gujjar D 2024 J. Mater. Sci. 59 5470Google Scholar

    [25]

    Roy T, Gruner M E, Entel P, Chakrabarti A 2015 J. Alloys Compd. 632 822Google Scholar

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [27]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Meng F B, Hao H Y, Ma Y X, Guo X M, Luo H Z, 2017 J. Alloys Compd. 695 2995Google Scholar

    [30]

    Wang X T, Cheng Z X, Yuan H K, Khenata R 2017 J. Mater. Chem. C 5 11559Google Scholar

    [31]

    孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志 2021 物理学报 70 137101Google Scholar

    Sun K C, Liu S, Gao R R, Shi X Y, Liu H Y, Luo H Z 2021 Acta Phys. Sin. 70 137101Google Scholar

    [32]

    Zhang Y J, Wang W H, Zhang H G, Liu E K, Ma R S, Wu G H 2013 Physica B 420 86Google Scholar

    [33]

    Grimvall G, Magyari-Köpe B, Ozoliņš V, Persson K A 2012 Rev. Mod. Phys. 84 945Google Scholar

    [34]

    Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar

    [35]

    He W Q, Huang H B, Liu Z H, Ma X Q 2018 Chin. Phys. B 27 016201Google Scholar

    [36]

    Paul S, Sanyal B, Ghosh S 2015 J. Phys. Condens. Matter 27 035401Google Scholar

    [37]

    Haines J, Leger J M, Bocquillon G 2011 Annu. Rev. Mater. Res. 31 1

    [38]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar

    [39]

    Deltell A, Mohamed A E A, Alvarez-Alonso P, Ipatov M, Andres J P, Gonzalez J A, Sanchez T, Zhukov A, Escoda M L, Sunol J J, Anton R L 2021 J. Mater. Res. Technol. 12 1091Google Scholar

    [40]

    Perez-Checa A, Feuchtwanger J, Barandiaran J M, Sozinov A, Ullakko K, Chernenko V A 2018 Scr. Mater. 154 131Google Scholar

    [41]

    金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良 2023 物理学报 72 046301Google Scholar

    Jin M, Bai J, Xu J X, Jiang X J, Zhang Y, Liu X, Zhao X, Zuo L 2023 Acta Phys. Sin. 72 046301Google Scholar

    [42]

    Li C M, Luo H B, Hu Q M, Yang R, Johansson B, Vitos L 2011 Phys. Rev. B 84 024206Google Scholar

    [43]

    Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar

    [44]

    Li G J, Liu E K, Wang W H, Wu G H 2023 Phys. Rev. B 107 134440Google Scholar

    [45]

    Felser C, Wollmann L, Chadov S, Fecher G H, Parkin S S P 2015 APL Mater. 3 041518Google Scholar

  • [1] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, doi: 10.7498/aps.72.20222037
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202179
    [3] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, doi: 10.7498/aps.69.20191551
    [4] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录. Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响. 物理学报, doi: 10.7498/aps.65.247501
    [5] 辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志. 等价电子数组元Heusler合金Fe2RuSi中的原子占位. 物理学报, doi: 10.7498/aps.65.147102
    [6] 张元磊, 李哲, 徐坤, 敬超. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究. 物理学报, doi: 10.7498/aps.64.066402
    [7] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, doi: 10.7498/aps.64.147301
    [8] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, doi: 10.7498/aps.63.023101
    [9] 张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄. 亚铁磁Heusler合金Mn2CoGa和Mn2CoAl掺杂Cr, Fe和Co的局域铁磁结构. 物理学报, doi: 10.7498/aps.62.037501
    [10] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置. 物理学报, doi: 10.7498/aps.62.147501
    [11] 张玉洁, 刘恩克, 张红国, 李贵江, 陈京兰, 王文洪, 吴光恒. 替代掺杂的MnNiGe1-xGax合金中马氏体相变和磁-结构耦合特性. 物理学报, doi: 10.7498/aps.62.197501
    [12] 罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范. Heusler合金Mn2NiGe马氏体相变的带Jahn-Teller效应研究. 物理学报, doi: 10.7498/aps.61.207503
    [13] 朱伟, 刘恩克, 张常在, 秦元斌, 罗鸿志, 王文洪, 杜志伟, 李建奇, 吴光恒. Heusler合金Fe2CrGa的磁性与结构. 物理学报, doi: 10.7498/aps.61.027502
    [14] 宋瑞宁, 朱伟, 刘恩克, 李贵江, 陈京兰, 王文洪, 李祥, 吴光恒. 内应力对Mn2NiGa铁磁形状记忆合金的结构、相变和磁性能的影响. 物理学报, doi: 10.7498/aps.61.027501
    [15] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算. 物理学报, doi: 10.7498/aps.60.127101
    [16] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, doi: 10.7498/aps.60.107203.1
    [17] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究. 物理学报, doi: 10.7498/aps.58.7857
    [18] 敬 超, 李 哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓. 哈斯勒合金Ni-Mn-Sn的马氏体相变与反磁热性质. 物理学报, doi: 10.7498/aps.57.3780
    [19] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应. 物理学报, doi: 10.7498/aps.57.4450
    [20] 代学芳, 刘何燕, 闫丽琴, 曲静萍, 李养贤, 陈京兰, 吴光恒. CoNiZ系列合金的结构和马氏体相变性质. 物理学报, doi: 10.7498/aps.55.2534
计量
  • 文章访问数:  180
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 修回日期:  2024-12-19
  • 上网日期:  2024-12-25

/

返回文章
返回