-
Heusler合金中的马氏体相变因其具有的诸多物性成为金属功能材料领域的研究热点. 本文对一类新的Ni2CuZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) Heusler合金的原子占位、电子结构、弹性参数和马氏体相变进行了第一性原理研究. 结果表明该系列材料中Cu均择优占据Heusler合金晶格B位从而形成L21结构, 其基态为顺磁态. Ni2CuZ发生四方晶格畸变后马氏体基态能量低于立方奥氏体, 相变能够发生, 这与材料电子结构的Jahn-Teller效应和奥氏体晶格的力学不稳定性有关, 也使其成为一种潜在的Heusler型形状记忆合金. 计算发现Ni2CuZ奥氏体与马氏体相能量差ΔEM与主族元素Z关系密切, Z属同一主族时, ΔEM随Z原子序数增加单调增大, Z属同一周期时, 变化趋势恰好相反. 这与Heusler型形状记忆合金中通常的价电子浓度e/a或电子密度n判据并不一致, 但可以通过材料剪切模量$ C' $以及弹性常数C44随Z元素的周期性变化解释. 该结果揭示了Heusler合金中马氏体相变与弹性参数之间的紧密联系, 可以将其作为预测新型形状记忆合金和分析材料物性的一个重要指标.
Ni2–based Heusler alloys have received increasing attention due to their shape memory effects and the relevant application properties. It is interesting to explore new Ni2–based shape memory alloys with novel properties. In this work, the site preference, electronic structure, elastic parameters and martensitic transformation of new Ni2Cu-based Heusler alloys Ni2CuZ (Z = Al, Ga, In, Si, Ge, Sn and Sb) are investigated theoretically. Between the two highly-ordered structures of Heusler alloys, Ni2CuZ alloy tends to crystallize in the L21 structure with Cu atom entering the B site in the cubic lattice. In contrast, the XA structure is higher in energy and lower in stability. This is different from the usual rule that transition metal atoms with more valence electrons tend to occupy the A, C sites at first and can be related to the strong covalent hybridization between Ni and main group elements Z in L21 type Ni2CuZ. Ni2CuZ martensites are all lower in energy than the corresponding austenites, which makes them candidates for shape memory alloys. This can be explained by the Jahn-Teller effect characterized by the reduced states near EF in the DOS structure and the mechanical instability of the cubic austenite lattice. The martensite-austenite energy difference ΔEM is strongly influenced by main group elements Z. When Z are in the same group, the ΔEM increases with their atomic number increasing, but when Z are in the same period, an opposite trend is observed. The ΔEM can be regarded as a driving force for the martensitic transformation: a larger ΔEM corresponds to a higher martensitic transformation TM. In Heusler alloys, electron concentration e/a and electron density n are usually used to discuss the variation of TM. An increase of e/a or n tends to increase TM. However, this is in discrepancy with the results in Ni2CuZ, which can be explained by using, the new factors, the negative shear modulus $ C' $ and softening of the elastic constant C44 and their variations with Z elements. These results reveal the close relation between the martensitic transformation and mechanical parameters and indicate that they are important factors to predict new shape memory alloys and analyse their properties in Heusler alloys. It is also found that the Young’s modulus and shear modulus increase and Poisson’s ratio decreases after the martensitic transformation. Thus, the Ni2CuZ martensite has higher stiffness and rigidity but lower ductility than the austenite. -
表 1 计算得到的L21型Ni2CuZ合金的平衡晶格常数a, 各弹性参数以及L21与XA两结构的能量差ΔE
Table 1. Equilibrium lattice constant a, total energy difference ΔE between the L21 and XA structure and mechanical properties of L21 type Ni2CuZ alloys.
成分 a/Å ΔE/(eV·f.u.–1) C11/GPa C12/GPa C44/GPa B/GPa G/GPa E/GPa ν B/GV Ni2CuAl 5.72 –0.29 145.9 176.3 124.3 166.1 11.0 32.4 0.47 2.42 Ni2CuGa 5.73 –0.28 150.2 181.0 109.6 170.7 5.4 16.0 0.48 2.87 5.75* — 141.3* 177.8* 110.4* 165.6* –0.81* — 0.34* 2.78* Ni2CuIn 6.00 –0.20 123.9 149.5 88.8 140.9 3.8 11.4 0.49 2.93 Ni2CuSi 5.63 –0.46 192.8 195.6 93.8 194.6 26.1 74.9 0.44 3.49 Ni2CuGe 5.74 –0.40 167.9 171.5 92.8 170.3 25.1 71.9 0.43 3.10 Ni2CuSn 5.99 –0.33 143.3 149.7 89.4 147.6 21.9 62.8 0.43 2.82 Ni2CuSb 5.99 –0.45 149.9 148.2 76.3 148.8 24.1 68.7 0.42 3.23 注: *数据引自参考文献[25] 表 2 计算得到的Ni2CuZ马氏体的晶格常数V与c/a, 价电子浓度e/a, 电子密度n和马氏体与奥氏体能量差ΔEM
Table 2. Equilibrium lattice parameters V and c/a, valence electron concentration e/a, electron density n and energy difference ΔEM calculated for Ni2CuZ martensite.
成分 V/Å3 c/a e/a n/Å–3 ΔEM/(eV·f.u.–1) Ni2CuAl 187.15 1.24 8.50 0.727 –0.082 Ni2CuGa 188.13 1.26 8.50 0.723 –0.090 Ni2CuIn 216.00 1.28 8.50 0.630 –0.101 Ni2CuSi 178.45 1.28 8.75 0.785 –0.032 Ni2CuGe 189.12 1.30 8.75 0.740 –0.047 Ni2CuSn 214.92 1.30 8.75 0.650 –0.049 Ni2CuSb 214.92 1.18 9.00 0.670 –0.003 表 3 计算得到的Ni2CuZ马氏体相的弹性参数
Table 3. Calculated mechanical parameters of Ni2CuZ martensite.
成分 C11/GPa C33/GPa C44/GPa C66/GPa C12/GPa C13/GPa B/GPa G/GPa E/GPa ν Ni2CuAl 243.3 196.1 118.9 86.4 100.9 148.6 164.3 71.4 187.1 0.31 Ni2CuGa 236.8 198.2 104.1 76.7 112.5 150.6 166.6 64.8 172.1 0.33 Ni2CuIn 194.6 178.8 80.2 65.4 104.8 126.2 142.5 54.1 144.2 0.33 Ni2CuSi 232.9 234.5 95.8 83.9 155.7 165.4 186.0 63.0 169.7 0.35 Ni2CuGe 220.8 203.7 77.1 69.2 135.3 157.5 171.7 51.9 141.3 0.36 Ni2CuSn 189.8 176.7 77.8 42.7 83.6 123.8 134.8 49.3 131.7 0.34 Ni2CuSb 217.3 153.1 76.6 16.1 79.9 147.3 148.4 28.7 81.0 0.41 -
[1] Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V 1996 Appl. Phys. Lett. 69 1966Google Scholar
[2] Yin R, Wendler F, Krevet B, Kohl M 2016 Sens. Actuators, A 246 48Google Scholar
[3] Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M, 2010 Nat. Mater. 9 478Google Scholar
[4] Zhang L, Zhang J, Li K L, He LQ, Zhou C, Wang D, Yang S, Li S, Wang D Y 2022 Acta Mater. 239 118245Google Scholar
[5] Gottschall T, Skokov K P, Scheibel F, Acet M, Zavareh M G, Skourski Y, Wosnitza J, Farle M, Gutfleisch O 2016 Phys. Rev. Appl. 5 024013Google Scholar
[6] Kalache A, Selle S, Schnelle W, Fecher G H, Höche T, Felser C, Markou A 2018 Phys. Rev. Mater. 2 084407Google Scholar
[7] Zhang Q Q, Liu Z H, Tan J G, Ma X Q, Cheng Z X 2019 Intermetallics 108 87Google Scholar
[8] Rashidi S, Ehsani M H, Shakouri M, Karimi N 2021 J. Magn. Magn. Mater. 537 168112Google Scholar
[9] Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 2008 ; 49 295
[10] Mendonça A A, Jurado J F, Stuard S J, Silva L E L, Eslava G G, Cohen L F, Ghivelder L, Gomes A M 2018 J. Alloys Compd. 738 509Google Scholar
[11] Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424Google Scholar
[12] Huang X M, Zhao Y, Yan H L, Jia N, Yang B, Li Z B, Zhang Y D, Esling C, Zhao X, Ren Q Y, Tong X, Zuo L 2023 Scr. Mater. 234 115544Google Scholar
[13] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957Google Scholar
[14] Pfeuffer L, Gràcia-Condal A, Gottschall T, Koch D, Faske T, Bruder E, Lemke J, Taubel A, Ener S, Scheibel F, Durst K, Skokov K P, Mañosa L, Planes A, Gutfleisch O 2021 Acta Mater. 217 117157Google Scholar
[15] Chen F, Sánchez Llamazares J L, Sánchez-Valdés C F, Chen F H, Li Z B, Tong Y X, Li L 2020 J. Alloys Compd. 825 154053Google Scholar
[16] Wen Z Q, Hou H, Tian J Z, Zhao Y H, Li H J, Han P D 2018 Intermetallics 92 15Google Scholar
[17] Buchelnikov V D, Zagrebin M A, Sokolovskiy V V 2018 J. Magn. Magn. Mater. 459 78Google Scholar
[18] Ma Y X, Ni Z N, Luo H Z, Liu H Y, Meng F B, Liu E K, Wang W H, Wu G H 2017 Intermetallics 81 1Google Scholar
[19] Li J Q, Li H Z, Jiang X X, Liu H Y, Luo H Z, Meng F B 2024 Appl. Phys. Lett. 124 222404Google Scholar
[20] Zhang K, Tan C, E. Guo E J, Feng Z C, Zhu J C, Y. X. Tong Y X, Cai W 2018 J. Mater. Chem. C 6 5228Google Scholar
[21] Liu B H, Luo H Z, Xin Y P, Zhang Y J, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2015 Solid State Commun. 222 23Google Scholar
[22] Kreiner Kalache G A, Hausdorf S, Alijani V, Qian J F, Shan G C, Burkhardt U, Ouardi S, Felser C 2014 Z. Anorg. Allg. Chem. 640 738Google Scholar
[23] Yang M, Hu Y L, Li X N, Li Z M, Zheng Y H, Li N J, Dong C 2022 J. Mater. Res. Technol. 17 1246Google Scholar
[24] Lakharwal P, Ahmed H, Chaudhary V, Patel P C, Kandpal H C, Gujjar D 2024 J. Mater. Sci. 59 5470Google Scholar
[25] Roy T, Gruner M E, Entel P, Chakrabarti A 2015 J. Alloys Compd. 632 822Google Scholar
[26] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567
[27] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[28] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[29] Meng F B, Hao H Y, Ma Y X, Guo X M, Luo H Z, 2017 J. Alloys Compd. 695 2995Google Scholar
[30] Wang X T, Cheng Z X, Yuan H K, Khenata R 2017 J. Mater. Chem. C 5 11559Google Scholar
[31] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志 2021 物理学报 70 137101Google Scholar
Sun K C, Liu S, Gao R R, Shi X Y, Liu H Y, Luo H Z 2021 Acta Phys. Sin. 70 137101Google Scholar
[32] Zhang Y J, Wang W H, Zhang H G, Liu E K, Ma R S, Wu G H 2013 Physica B 420 86Google Scholar
[33] Grimvall G, Magyari-Köpe B, Ozoliņš V, Persson K A 2012 Rev. Mod. Phys. 84 945Google Scholar
[34] Hatcher N, Kontsevoi O Y, Freeman A J 2009 Phys. Rev. B 80 144203Google Scholar
[35] He W Q, Huang H B, Liu Z H, Ma X Q 2018 Chin. Phys. B 27 016201Google Scholar
[36] Paul S, Sanyal B, Ghosh S 2015 J. Phys. Condens. Matter 27 035401Google Scholar
[37] Haines J, Leger J M, Bocquillon G 2011 Annu. Rev. Mater. Res. 31 1
[38] Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903Google Scholar
[39] Deltell A, Mohamed A E A, Alvarez-Alonso P, Ipatov M, Andres J P, Gonzalez J A, Sanchez T, Zhukov A, Escoda M L, Sunol J J, Anton R L 2021 J. Mater. Res. Technol. 12 1091Google Scholar
[40] Perez-Checa A, Feuchtwanger J, Barandiaran J M, Sozinov A, Ullakko K, Chernenko V A 2018 Scr. Mater. 154 131Google Scholar
[41] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良 2023 物理学报 72 046301Google Scholar
Jin M, Bai J, Xu J X, Jiang X J, Zhang Y, Liu X, Zhao X, Zuo L 2023 Acta Phys. Sin. 72 046301Google Scholar
[42] Li C M, Luo H B, Hu Q M, Yang R, Johansson B, Vitos L 2011 Phys. Rev. B 84 024206Google Scholar
[43] Kundu A, Ghosh S, Ghosh S 2017 Phys. Rev. B 96 174107Google Scholar
[44] Li G J, Liu E K, Wang W H, Wu G H 2023 Phys. Rev. B 107 134440Google Scholar
[45] Felser C, Wollmann L, Chadov S, Fecher G H, Parkin S S P 2015 APL Mater. 3 041518Google Scholar
计量
- 文章访问数: 180
- PDF下载量: 4
- 被引次数: 0