搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯中的拓扑安德森绝缘体相

王玉 梁钰林 邢燕霞

引用本文:
Citation:

石墨烯中的拓扑安德森绝缘体相

王玉, 梁钰林, 邢燕霞

Topological Anderson insulator phase in graphene

WANG Yu, LIANG Yulin, XING Yanxia
科大讯飞翻译 (iFLYTEK Translation)
PDF
导出引用
  • 石墨烯是具有蜂窝结构的特殊二维材料, 在电子器件应用方面具有潜力. 拓扑安德森绝缘体现象是一种在无序诱导下系统从金属转变为拓扑绝缘体即拓扑安德森绝缘体的新奇现象. 本文基于Haldane模型, 利用非平衡格林函数理论, 分别计算了不同状态下ZigZag边界准一维石墨烯条带的输运性质随无序的变化. 研究发现拓扑平庸和拓扑非平庸状态下的系统都具有鲁棒的边缘态. 当费米能处于导带中, 两种状态的系统在较弱和较强无序作用下电导快速下降, 而在中等无序强度下, 前者电导下降减缓, 后者出现电导为一的平台, 表明系统出现拓扑安德森绝缘体相. 对边缘态与体态的传输系数的分析表明Haldane模型中上述现象的形成基础是体态与鲁棒边缘态的共存, 随着无序的增强体态被局域化, 拓扑平庸的边缘态能一定程度下抵抗中等强度的无序, 有拓扑保护的边缘态鲁棒性更强几乎不受影响, 使得系统输运稳定性增强并产生电导平台.
    Graphene, a two-dimensional material characterized by its honeycomb lattice structure, has demonstrated significant potential applications in electronic devices. The topological Anderson insulator (TAI) represents a novel phenomenon where a system transforms into a topological phase induced by disorder. In past studies, TAI is widely found in theoretical models such as the BHZ model and the Kane-Mele model. A common feature is that these models can open topological non-trivial gaps by changing their topological mass terms, but the rise of TAI is independent of the topological status of gaps. In order to investigate whether there is any difference in the disorder-induced phase between topologically trivial and topologically non-trivial cases of the Haldane model in the clean limit, the Haldane model in an infinitely long quasi-one-dimensional ZigZag-edged graphene ribbon is considered in this work. The Hamiltonian and band structure of it are analyzed, and the non-equilibrium Green's function theory is used to calculate the transport properties of ribbons under topologically trivial and non-trivial states versus disorder. The conductance, current density, transport coefficient and localisation length are calculated as parameters characterising the transmission properties. It is found from the analysis of the band structure that the system in either topological trivial or topological non-trivial state has edge states. When the Fermi energy lies in the conduction band, the conductance of the system decreases rapidly under weak disorder intensity and strong disorder intensity, regardless of whether the system is topologically non-trivial or not. At moderate disorder intensities, the conductance of topologically non-trivial systems keeps stable with a value of 1, indicating the appearance of the topological Anderson insulator phase in the system. Meanwhile, for topological trivial systems, the decrease of conductance noticeably slows down. The calculations of local current density show that both systems exhibit robust edge states, with topologically protected edge states showing greater robustness. The analysis of the transmission coefficients of edge state and bulk state indicates that the coexistence of bulk states and robust edge states is the basis for the phenomena observed in the Haldane model. Under weak disorder, bulk states are localized, and the transmission coefficient of edge states decreases due to scattering into the bulk states. Under strong disorder, edge states are localized, resulting in zero conductance. However, at moderate disorder strength, bulk states are annihilated while robust edge states persist, thereby reducing scattering from edge states to bulk states. This enhances the transport stability of the system. The fluctuation of conduction and localisation length reveal that the metal-TAI-normal insulator transition occurs in the Haldane model with topological non-trivial gap and if the system is of cylinder shape, there will be no edge states, the TAI will not occur. For the topological trivial gap case, only metal-normal insulator transition can be clearly identified. Therefore, topologically protected edge states are so robust that they generate a conductance plateau and it is demonstrated that the topologically trivial edge states are robust to a certain extent and can resist this level of disorder. The robustness of edge states is a crucial factor for the occurrence of the TAI phenomenon in the Haldane model.
  • 图 1  (a) 当Ny = 2, Nx =4时, ZigZag边界石墨烯条带几何结构图, 红色突出显示系统单位元, 即Nx =1, ${{\boldsymbol{a}}_1}, $${{\boldsymbol{a}}_2}$为格矢; (b) Ny = 80时, 无限大石墨烯平面及ZigZag边界石墨烯条带狄拉克点处带边位置随M 变化图, 图中由绿色线串联的两个绿色星号标记了系统拓扑转变点

    Fig. 1.  (a) Geometry of ZigZag graphene ribbon when Ny = 2, Nx = 4, the red rectangles in the figure show the geometry of the unit cell, Nx = 1, ${{\boldsymbol{a}}_1}, $${{\boldsymbol{a}}_2}$arelattice vectors; (b) variation of band edges with M at Dirac points in the infinite graphene plane and ZigZag graphene ribbon for Ny = 80, green stars connected by a green line mark the system topology transition points.

    图 2  (a), (d)无限大石墨烯平面能带结构图, 白色六边形标注了第一布里渊区, 颜色条代表能量E的大小 (a) $M = 0$; (d) $M = $$ 0.52 t$. (b), (c), (e), (f)无限长ZigZag边石墨烯条带能带结构 (b) $M = 0$; (c) $M = 0.3 t$; (e) $M = 0.52 t$; (f) $M = 0.7 t$. 将$M$或$\phi $反号可以使能带的闭合位置转移至另外的狄拉克点

    Fig. 2.  (a), (d) Band structure of two-dimensional infinite graphene surface, the first Brillouin zone is marked by the white hexagon in the figure, and the color bar represents the value of energy E: (a) $ M = 0 $; (d) $M = 0.52 t$. (b), (c), (e), (f) Band structure of infinitely long ZigZag-edge graphene ribbon: (b) $M = 0$; (c) $M = 0.3 t$; (e) $M = 0.52 t$; (f) $M = 0.7 t$. Inverting the sign of $M$or $\phi $ shifts the closure position of the energy band to the other Dirac point.

    图 3  Ny = 40, Nx = 69, $ M = 0.3 t $, $ {E_{\text{F}}} = 0.25 t $时, 不同无序强度下体系的局域电流密度Ji分布图 (a) W = 0.8t; (b) W = 2.8t; (c) W = 5t

    Fig. 3.  Local current density distribution of the system for different strength of the disorder with Ny = 40, Nx = 69, $ M = 0.3 t $, $ {E_{\text{F}}} = 0.25 t $: (a) W = 0.8t; (b) W = 2.8t; (c) W = 5t.

    图 4  $ M = 0.7 t $时, 不同无序强度下体系的局域电流分布图, 其他参数与图3相同

    Fig. 4.  Local current density distribution of the system for different strength of the disorder with $ M = 0.7 t $, and other parameters are the same as Fig. 3.

    图 5  (a), (b)子带传输随无序的变化; (c), (d) 边缘态概率密度y方向分布图; (a), (c) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156; (b), (d) $ M = 0.7 t $, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156

    Fig. 5.  (a), (b) Transmissions of eigen channels vs. disorder; (c), (d) edge state probability distribution in y direction; (a), (c) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156; (b), (d) $ M = 0.7 t $, ${E_{\text{F}}} = 0.25 t$, Ny = 90, Nx = 156.

    图 6  电导、电导涨落及局域化长度随无序的变化. c代表圆筒形(cylinder)结构, r代表条带(ribbon)结构, 由红色点划线串联的星号代表系统相变点 (a)—(c) $ M = 0.3 t $, $ {E_{\text{F}}} = 0.15 t $; (d)—(f) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, 图(f)中实线代表Ny = 34, 虚线代表Ny = 60; (g)—(i) $M = 0.7 t$, ${E_{\text{F}}} = 0.25 t$

    Fig. 6.  The conductance, fluctuation of the conductance and the localization length vs. disoder. The c denotes a cylindrical structure and r denotes a striped structure, stars in series by red dotted lines represent phase transition points: (a)–(c) $ M = 0.3 t $, $ {E_{\text{F}}} = 0.15 t $; (d)–(f) $M = 0.3 t$, ${E_{\text{F}}} = 0.25 t$, the solid lines represent Ny = 34 and the dotted lines represent Ny = 60 in panel (f); (g)–(i) $M = 0.7 t$, ${E_{\text{F}}} = 0.25 t$.

  • [1]

    Peres N M R 2010 Rev. Mod. Phys. 82 2673Google Scholar

    [2]

    Peres N M R, Castro Neto A H, Guinea F 2006 Phys. Rev. B 73 195411Google Scholar

    [3]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [4]

    Geim A K 2009 Science 324 1530Google Scholar

    [5]

    Das Sarma S, Adam S, Hwang E H, Rossi E 2011 Rev. Mod. Phys. 83 407Google Scholar

    [6]

    Li T C, Lu S P 2008 Phys. Rev. B 77 085408Google Scholar

    [7]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [8]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [9]

    Slonczewski J C, Weiss P R 1958 Phys. Rev. 109 272Google Scholar

    [10]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar

    [11]

    Thonhauser T, Vanderbilt D 2006 Phys. Rev. B 74 235111Google Scholar

    [12]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [13]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [14]

    Anderson P W 1972 Science 177 393Google Scholar

    [15]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [16]

    Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) pp72–77

    [17]

    Chang Z W, Hao W C, Liu X 2022 J. Phys. : Condens. Matter 34 485502Google Scholar

    [18]

    Wen X G 1989 Phys. Rev. B 40 7387

    [19]

    Sticlet D, Pindens. Matte Phys. Rev. B 87 115402

    [20]

    Yakovenko V M 1990 Phys. Rev. Lett. 65 251Google Scholar

    [21]

    Zhao Y F, Zhang R, Mei R, Zhou L J, Yi H, Zhang Y Q, Yu J, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X, Chang C Z 2020 Nature 588 419Google Scholar

    [22]

    Liu C X, Zhang S C, Qi X L 2016 Annu. Rev. Condens. Matter 7 301Google Scholar

    [23]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [24]

    Chang C Z, Liu C X, MacDonald A H 2023 Rev. Mod. Phys. 95 011002Google Scholar

    [25]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [26]

    Sompet P, Hirthe S, Bourgund D, Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R, Pollmann F, Salomon G, Gross C, Hilker T A, Bloch I 2022 Nature 606 484Google Scholar

    [27]

    Xu J J, Gu Q, Mueller E J 2018 Phys. Rev. Lett. 120 085301Google Scholar

    [28]

    Simon J 2014 Nature 515 202Google Scholar

    [29]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [30]

    König M, Wiedmann S, Br J 2018 Chalopin T, Bibo J, Koepsell J, Bojović P, Verresen R Science 318 766

    [31]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [32]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [33]

    Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806Google Scholar

    [34]

    Yamakage A, Nomura K, Imura K I, Kuramoto Y 2011 J. Phys. Soc. Jpn. 80 053703Google Scholar

    [35]

    Guo H M, Rosenberg G, Refael G, Franz M 2010 Phys. Rev. Lett. 105 216601Google Scholar

    [36]

    Liu H, Xie B Y, Wang H N, Liu W W, Li Z C, Cheng H, Tian J G, Liu Z Y, Chen S Q 2023 Phys. Rev. B 108 L161410Google Scholar

    [37]

    Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C, Szameit A 2018 Nature 560 461Google Scholar

    [38]

    Zhang Z Q, Wu B L, Song J, Jiang H 2019 Phys. Rev. B 100 184202Google Scholar

    [39]

    Chen R, Yi X X, Zhou B 2023 Phys. Rev. B 108 085306Google Scholar

    [40]

    Chen H, Liu Z R, Chen R, Zhou B 2023 Chin. Phys. B 33 017202Google Scholar

    [41]

    Groth C W, Wimmer M, Akhmerov A R, Tworzydło J, Beenakker C W J 2009 Phys. Rev. Lett. 103 196805Google Scholar

    [42]

    Orth C P, Sekera T, Bruder C, Schmidt T L 2016 Sci. Rep. 6 24007Google Scholar

    [43]

    邢燕霞, 梁钰林 2022 山西大学学报(自然科学版) 3 672

    Xing Y X, Lang Y L 2022 J. Shanxi. Univ. (Nat. Sci. Ed. ) 3 672

    [44]

    Wei M, Zhou M, Zhang Y T, Xing Y 2020 Phys. Rev. B 101 155408Google Scholar

    [45]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [46]

    Caroli C, Combescot R, Nozieres P, Saint James D 1971 J. Phys. C: Solid State Phys. 4 916Google Scholar

    [47]

    Xing Y X, Wang J, Sun Q F 2010 Phys. Rev. B 81 165425Google Scholar

    [48]

    Jiang H, Wang L, Sun Q F, Xie X C 2009 Phys. Rev. B 80 165316Google Scholar

    [49]

    Zhang Y Y, Hu J P, Bernevig B A, Wang X R, Xie X C, Liu W M 2008 Phys. Rev. B 78 155413Google Scholar

    [50]

    Jauho A e, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528Google Scholar

    [51]

    Nikolić B K, Zârbo L P, Souma S 2006 Phys. Rev. B 73 075303Google Scholar

    [52]

    Cresti A, Grosso G, Parravicini G P 2004 Phys. Rev. B 69 233313Google Scholar

    [53]

    琚鑫, 郭健宏 2011 物理学报 60 057302Google Scholar

    Ju X, Guo J H 2011 Acta Phys. Sin. 60 057302Google Scholar

    [54]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Ed. 1st) (United Kingdom: Cambridge University Press) pp57–65

    [55]

    许易, 许小言, 张薇, 欧阳滔, 唐超 2019 物理学报 68 247202Google Scholar

    Xu Y, Xu X Y, Zhang W, Ouyang T, Tang C 2019 Acta Phys. Sin. 68 247202Google Scholar

    [56]

    邢海英, 张子涵, 吴文静, 郭志英, 茹金豆 2023 物理学报 72 038502Google Scholar

    Xing H Y, Zhang Z H, Wu W J, Guo Z Y, Ru J D 2023 Acta Phys. Sin. 72 038502Google Scholar

    [57]

    闫婕, 魏苗苗, 邢燕霞 2019 物理学报 68 227301Google Scholar

    Yan J, Wei M M, Xing Y X 2019 Acta Phys. Sin. 68 227301Google Scholar

    [58]

    MacKinnon A, Kramer B 1981 Phys. Rev. Lett. 47 1546Google Scholar

    [59]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [60]

    Chen C Z, Liu H, Xie X C 2019 Phys. Rev. Lett. 122 026601Google Scholar

  • [1] 邓小松, 张志勇, 康宁. 基于一维电子体系的超导复合器件和量子输运研究. 物理学报, doi: 10.7498/aps.74.20241672
    [2] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, doi: 10.7498/aps.73.20231987
    [3] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, doi: 10.7498/aps.72.20230502
    [4] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, doi: 10.7498/aps.72.20222159
    [5] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, doi: 10.7498/aps.72.20230690
    [6] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, doi: 10.7498/aps.71.20220029
    [7] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, doi: 10.7498/aps.71.20221151
    [8] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, doi: 10.7498/aps.71.20221304
    [9] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, doi: 10.7498/aps.70.20201801
    [10] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, doi: 10.7498/aps.70.20210014
    [11] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, doi: 10.7498/aps.68.20190095
    [12] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, doi: 10.7498/aps.68.20191072
    [13] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, doi: 10.7498/aps.66.227804
    [14] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, doi: 10.7498/aps.64.097202
    [15] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质. 物理学报, doi: 10.7498/aps.61.193601
    [16] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, doi: 10.7498/aps.59.376
    [17] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [18] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
    [19] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, doi: 10.7498/aps.58.4162
    [20] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究. 物理学报, doi: 10.7498/aps.55.2949
计量
  • 文章访问数:  423
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 修回日期:  2024-12-08
  • 上网日期:  2024-12-27

/

返回文章
返回