搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维电子体系的超导复合器件和量子输运研究

邓小松 张志勇 康宁

引用本文:
Citation:

基于一维电子体系的超导复合器件和量子输运研究

邓小松, 张志勇, 康宁

Study of hybrid superconducting devices and quantum transport based on one-dimensional electronic systems

DENG Xiaosong, ZHANG Zhiyong, KANG Ning
PDF
导出引用
  • 低维电子材料与超导材料的复合体系一直是研究介观输运和低维超导特性的重要平台,其中具有强自旋轨道耦合效应的低维结构与超导宏观量子态结合呈现出丰富的量子现象,为探索新物性和研制新型拓扑量子器件提供了一个理想的平台。采用高质量的一维电子材料构筑超导复合器件,探索受限量子体系与超导界面的量子输运现象和器件调控机制迅速成为研究的前沿和热点。其中的关键问题在于理解纳米尺度下低维体系与超导界面的特征散射机制和量子输运过程,研究电荷态与拓扑局域态的耦合机制,实现对拓扑态本征输运特性的探测,在此基础上为研制新型超导纳电子器件和拓扑量子器件探索新原理和新方法。由于多种能量尺度和束缚态的竞争,介观尺度下的超导复合结构在器件物理、结构设计以及测量方案上都存在前所未有的挑战。本文回顾了基于一维电子体系的超导复合器件的近期进展,聚焦在以半导体纳米线和碳纳米管为代表的实验体系,简要介绍了从材料和器件物理,到输运测量的主要现象和实验挑战。最后本文对一维体系拓扑量子器件的研制和输运研究进行了总结和展望。
    The hybrid system of low-dimensional electronic and superconducting materials has been an attractive structure for studying mesoscopic transport and low-dimensional superconducting properties. Low-dimensional structures with strong spin-orbit coupling exhibit rich quantum phenomena combined with superconducting macroscopic quantum states, becoming an important platform for exploring novel physical properties and developing new topological quantum devices. The construction of hybrid superconducting devices based on high-quality one-dimensional electronic materials, and the exploration of quantum transport phenomena at the interface emerge as research frontier. It is crucial to understand the characteristic scattering mechanism and quantum transport process in these hybrid systems at the nanoscale. The study of the coupling mechanism between the charge state and the topological localized state, and the experimental probe of the intrinsic transport properties of the topological states are the key issues, which enable the development of the new principles and methods for novel superconducting nanoelectronic devices and topological quantum devices. Due to the competition of multiple energy scales and complicated bound states in these hybrid structures, the device physics and measurement schemes present unprecedented challenges. This paper reviews recent advances in hybrid superconducting devices based on one-dimensional electronic systems, focusing on the material systems based on semiconducting nanowires and carbon nanotubes. Semiconducting nanowires with strong spin-orbit coupling and large Landau g-factor are expected to support Majorana bound states and require further improvements in the material quality, interface between superconductors and nanowires, understanding of the transport mechanism, and detection scheme. The construction strategies of extending topological phase space, including broken symmetry, helical modes, semiconducting characteristics, and attenuation of the external magnetic field, are proposed and discussed in hybrid superconducting devices based on carbon nanotubes. We briefly introduce the main phenomena and experimental challenges, ranging from material and device physics. Finally, this paper summarizes and gives an outlook on the development and transport studies of topological quantum devices based on one-dimensional systems.
  • [1]

    Winkelmann C B, Roch N, Wernsdorfer W, Bouchiat V and Balestro F 2009 Nat. Phys. 5876

    [2]

    De Franceschi S, Kouwenhoven L, Schönenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5703

    [3]

    Doh Y J, van Dam J A, Roest A L, Bakkers E P A M, Kouwenhoven L P and De Franceschi S 2005 Science 309272

    [4]

    Jarillo-Herrero P, van Dam J A and Kouwenhoven L P 2006 Nature 439953

    [5]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 44656

    [6]

    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L and Lu L 2012 Sci. Rep. 2339

    [7]

    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H and Brinkman A 2012 Nat. Mater. 11417

    [8]

    Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L and McEuen P L 1999 Nature 397598

    [9]

    Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323106

    [10]

    Deshpande V V and Bockrath M 2008 Nat. Phys. 4314

    [11]

    Li S, Kang N, Caroff P and Xu H Q 2017 Phys. Rev. B 95014515

    [12]

    Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Das Sarma S and Vandersypen L M K 2017 Nature 54870

    [13]

    Xiang J, Vidan A, Tinkham M, Westervelt R M and Lieber C M 2006 Nat. Nanotechnol. 1208

    [14]

    He J J, Tanaka Y and Nagaosa N 2023 Nat. Commun. 143330

    [15]

    Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and Strunk C 2010 Phys. Rev. Lett. 104026801

    [16]

    Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 801083

    [17]

    Maeno Y, Ikeda A, and Mattoni G 2024 Nat. Phys. 201712

    [18]

    Dutta B, Umansky V, Banerjee M and Heiblum M 2022 Science 3771198

    [19]

    Fu L, and Kane C L 2008 Phys. Rev. Lett. 100096407

    [20]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 3361003

    [21]

    Yang F, Ding Y, Qu F M, Shen J, Chen J, Wei Z C, Ji Z Q, Liu G T, Fan J, Yang C L, Xiang T and Lu L 2012 Phys. Rev. B 85104508

    [22]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H and Gao H J 2018 Science 362333

    [23]

    Xu L, Li P L, LüZ Z, Shen J, Qu F M, Liu G T and Lü L 2023 Acta Phys. Sin. 72177401(in Chinese)[徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力2023物理学报72177401]

    [24]

    Chu C G L, Wang A Q and Liao Z M 2023 Acta Phys. Sin. 72087401(in Chinese)[初纯光, 王安琦, 廖志敏2023物理学报72087401]

    [25]

    Qi J J, Chen C Z, Song J T, Liu J, He K, Sun Q F and Xie X C 2025 Sci. China Phys. Mech. Astron. 68227401

    [26]

    Lyu B S, Lou S, Shen P Y and Shi Z W 2024 PHYSICS 53683(in Chinese)[吕博赛, 娄硕, 沈沛约, 史志文2024物理53683]

    [27]

    Yazdani A, von Oppen F, Halperin B I and Yacoby A 2023 Science 3801235

    [28]

    Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105077001

    [29]

    Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105177002

    [30]

    Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 352

    [31]

    Dmytruk O and Klinovaja J 2018 Phys. Rev. B 97155409

    [32]

    Nichele F, Chesi S, Hennel S, Wittmann A, Gerl C, Wegscheider W, Loss D, Ihn T and Ensslin K 2014 Phys. Rev. Lett. 113046801

    [33]

    Miserev D S, Srinivasan A, Tkachenko O A, Tkachenko V A, Farrer I, Ritchie D A, Hamilton A R and Sushkov O P 2017 Phys. Rev. Lett. 119116803

    [34]

    Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 93151

    [35]

    Fasth C, Fuhrer A, Samuelson L, Golovach V N and Loss D 2007 Phys. Rev. Lett. 98266801

    [36]

    Pribiag V S, Nadj-Perge S, Frolov S M, van den Berg J W G, van Weperen I, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2013 Nat. Nanotechnol. 8170

    [37]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8887

    [38]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 126414

    [39]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346602

    [40]

    Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107217001

    [41]

    Fornieri A, Whiticar A M, Setiawan F, Marin E P, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, Gardner G C, Berg E, Manfra M J, Stern A, Marcus C M and Nichele F 2019 Nature 56989

    [42]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116257003

    [43]

    Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R and Kouwenhoven L P 2020 Nat. Rev. Phys. 2575

    [44]

    Li S, Kang N, Fan D X, Wang L B, Huang Y Q, Caroff P and Xu H Q 2016 Sci. Rep. 624822

    [45]

    Plissard S R, van Weperen I, Car D, Verheijen M A, Immink G W G, Kammhuber J, Cornelissen L J, Szombati D B, Geresdi A, Frolov S M, Kouwenhoven L P and Bakkers E P A M 2013 Nat. Nanotechnol. 8859

    [46]

    He J, Pan D, Yang G, Liu M, Ying J, Lyu Z, Fan J, Jing X, Liu G, Lu B, Liu D E, Zhao J, Lu L and Qu F 2020 Phys. Rev. B 102075121

    [47]

    Luthi F, Stavenga T, Enzing O W, Bruno A, Dickel C, Langford N K, Rol M A, Jespersen T S, Nygård J, Krogstrup P and DiCarlo L 2018 Phys. Rev. Lett. 120100502

    [48]

    Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K, Connolly T, Krogstrup P, Nygård J, Levy Yeyati A, Geresdi A and Devoret M H 2021 Science 373430

    [49]

    Thomas C, Hatke A T, Tuaz A, Kallaher R, Wu T, Wang T, Diaz R E, Gardner G C, Capano M A and Manfra M J 2018 Phys. Rev. Mater. 2104602

    [50]

    Lee J S, Shojaei B, Pendharkar M, Feldman M, Mukherjee K and Palmstrøm C J 2019 Phys. Rev. Mater. 3014603

    [51]

    Lei Z, Lehner C A, Cheah E, Karalic M, Mittag C, Alt L, Scharnetzky J, Wegscheider W, Ihn T and Ensslin K 2019 Appl. Phys. Lett. 115012101

    [52]

    Mittag C, Karalic M, Lei Z, Thomas C, Tuaz A, Hatke A T, Gardner G C, Manfra M J, Ihn T and Ensslin K 2019 Phys. Rev. B 100075422

    [53]

    Microsoft Quantum 2023 Phys. Rev. B 107245423

    [54]

    Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygård J, Marcus C M and Jespersen T S 2015 Nat. Mater. 14400

    [55]

    Vaitiek·enas S, Krogstrup P and Marcus C M 2020 Phys. Rev. B 101060507

    [56]

    Deng M T, Vaitiek·enas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 3541557

    [57]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016 Nature 531206

    [58]

    Albrecht S M, Hansen E B, Higginbotham A P, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Danon J, Flensberg K and Marcus C M 2017 Phys. Rev. Lett. 118137701

    [59]

    Bordin A, Wang G, Liu C-X, ten Haaf S L D, van Loo N, Mazur G P, Xu D, van Driel D, Zatelli F, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P and Dvir T 2023 Phys. Rev. X 13031031

    [60]

    Mazur G P, van Loo N, van Driel D, Wang J Y, Badawy G, Gazibegovic S, Bakkers E P A M and Kouwenhoven L P 2022 arXiv: 2211. 14283[cond-mat.supr-con]

    [61]

    Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C P, Lee J S, Harrington S D, Badawy G, Gazibegovic S, Op het Veld R L M, Rossi M, Jung J, Chen A-H, Verheijen M A, Hocevar M, Bakkers E P A M, Palmstrøm C J and Frolov S M 2021 Science 372508

    [62]

    Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K and Nygård J 2021 Nat. Nanotechnol. 16776

    [63]

    Vaitiek·enas S, Liu Y, Krogstrup P and Marcus C M 2021 Nat. Phys. 1743

    [64]

    Liu Y, Vaitiek·enas S, Martí-Sánchez S, Koch C, Hart S, Cui Z, Kanne T, Khan S A, Tanta R, Upadhyay S, Cachaza M E, Marcus C M, Arbiol J, Moler K A and Krogstrup P 2020 Nano Lett. 20456

    [65]

    Vaitiek·enas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flensberg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 3671442

    [66]

    Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R and Katsaros G 2021 Science 37382

    [67]

    Woods B D, Das Sarma S and Stanescu T D 2019 Phys. Rev. B 99161118

    [68]

    San-Jose P, PayáC, Marcus C M, Vaitiek·enas S and Prada E 2023 Phys. Rev. B 107155423

    [69]

    San-Jose P, Prada E and Aguado R 2012 Phys. Rev. Lett. 108257001

    [70]

    Legg H F, Laubscher K, Loss D and Klinovaja J 2023 Phys. Rev. B 108214520

    [71]

    Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New. J. Phys. 13053016

    [72]

    Danon J, Hellenes A B, Hansen E B, Casparis L, Higginbotham A P and Flensberg K 2020 Phys. Rev. Lett. 124036801

    [73]

    Pikulin D I, van Heck B, Karzig T, Martinez E A, Nijholt B, Laeven T, Winkler G W, Watson J D, Heedt S, Temurhan M, Svidenko V, Lutchyn R M, Thomas M, de Lange G, Casparis L and Nayak C 2021 arXiv: 2103. 12217. [cond-mat.mes-hall]

    [74]

    Hess R, Legg H F, Loss D and Klinovaja J 2023 Phys. Rev. Lett. 130207001

    [75]

    Rosdahl T Ö, Vuik A, Kjaergaard M and Akhmerov A R 2018 Phys. Rev. B 97045421

    [76]

    Banerjee A, Lesser O, Rahman M A, Thomas C, Wang T, Manfra M J, Berg E, Oreg Y, Stern A and Marcus C M 2023 Phys. Rev. Lett. 130096202

    [77]

    Pan H, Sau J D and Das Sarma S 2021 Phys. Rev. B 103014513

    [78]

    Tsintzis A, Souto R S, Flensberg K, Danon J and Leijnse M 2024 PRX Quantum 5010323

    [79]

    Leijnse M and Flensberg K 2012 Phys. Rev. B 86134528

    [80]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M and Kouwenhoven L P 2023 Nature 614445

    [81]

    Bordin A, Li X, van Driel D, Wolff J C, Wang Q, ten Haaf S L D, Wang G, van Loo N, Kouwenhoven L P and Dvir T 2024 Phys. Rev. Lett. 132056602

    [82]

    Laird E A, Kuemmeth F, Steele G A, Grove-Rasmussen K, Nygård J, Flensberg K and Kouwenhoven L P 2015 Rev. Mod. Phys. 87703

    [83]

    Minot E D, Yaish Y, Sazonova V, Park J Y, Brink M and McEuen P L 2003 Phys. Rev. Lett. 90156401

    [84]

    Minot E D, Yaish Y, Sazonova V and McEuen P L 2004 Nature 428536

    [85]

    Jhang S H, Marganska M, Skourski Y, Preusche D, Grifoni M, Wosnitza J and Strunk C 2011 Phys. Rev. Lett. 106096802

    [86]

    Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323106

    [87]

    Deng X, Gong K, Wang Y, Liu Z, Jiang K, Kang N and Zhang Z 2023 Phys. Rev. Lett. 130207002

    [88]

    Jin Z, Chu H B, Wang J Y, Hong J X, Tan W C and Li Y 2007 Nano Lett. 72073

    [89]

    Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L and Fan S S 2009 Nano Lett. 93137

    [90]

    Kong J, Yenilmez E, Tombler T W, Kim W, Dai H J, Laughlin R B, Liu L, Jayanthi C S and Wu S Y 2001 Phys. Rev. Lett. 87106801

    [91]

    Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411665

    [92]

    Javey A, Guo J, Wang Q, Lundstrom M and Dai H J 2003 Nature 424654

    [93]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J and Peng L M 2007 Nano Lett. 73603

    [94]

    Urgell C, Yang W, De Bonis S L, Samanta C, Esplandiu M J, Dong Q, Jin Y and Bachtold A 2020 Nat. Phys. 1632

    [95]

    Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D and Laird E A 2020 Nat. Phys. 1675

    [96]

    Wang S, Zhao S H, Shi Z W, Wu F Q, Zhao Z Y, Jiang L L, Watanabe K, Taniguchi T, Zettl A, Zhou C W and Wang F 2020 Nat. Mater. 19986

    [97]

    Wu C C, Liu C H and Zhong Z H 2010 Nano Lett. 101032

    [98]

    Pei F, Laird E A, Steele G A and Kouwenhoven L P 2012 Nat. Nanotechnol. 7630

    [99]

    Zhang R F, Ning Z Y, Zhang Y Y, Xie H H, Zhang Q, Qian W Z, Chen Q and Wei F 2013 Nanoscale 56584

    [100]

    Zhang R F, Ning Z Y, Zhang Y Y, Zheng Q S, Chen Q, Xie H H, Zhang Q, Qian W Z and Wei F 2013 Nat. Nanotechnol. 8912

    [101]

    Zhang R F, Zhang Y Y, Zhang Q, Xie H H, Wang H D, Nie J Q, Wen Q and Wei F 2013 Nat. Commun. 41727

    [102]

    Shen B Y, Zhu Z X, Zhang J Y, Xie H H, Bai Y X and Wei F 2018 Adv. Mater. 301705844

    [103]

    Kasumov A Y, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I I, Gorbatov Y B, Volkov V T, Journet C and Burghard M 1999 Science 2841508

    [104]

    Mergenthaler M, Schupp F J, Nersisyan A, Ares N, Baumgartner A, Schönenberger C, Briggs G A D, Leek P J and Laird E A 2021 Mater. Quantum. Technol. 1035003

    [105]

    Bauml C, Bauriedl L, Marganska M, Grifoni M, Strunk C and Paradiso N 2021 Nano Lett. 218627

    [106]

    Sau J D and Tewari S 2013 Phys. Rev. B 88054503

    [107]

    Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74155426

    [108]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74165310

    [109]

    Kuemmeth F, Ilani S, Ralph D C and McEuen P L 2008 Nature 452448

    [110]

    Marganska M, Milz L, Izumida W, Strunk C and Grifoni M 2018 Phys. Rev. B 97075141

    [111]

    Milz L, Izumida W, Grifoni M and Marganska M 2019 Phys. Rev. B 100155417

    [112]

    Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93180501

    [113]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12139

    [114]

    Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12144

    [115]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 3501353

    [116]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 3381193

    [117]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D and Hunt B M 2018 Nat. Commun. 91427

    [118]

    Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362926

    [119]

    Lesser O, Shavit G and Oreg Y 2020 Phys. Rev. Res. 2023254

    [120]

    Han T Y, Shen J Y, Yuan N F Q, Lin J X Z, Wu Z F, Wu Y Y, Xu S G, An L H, Long G, Wang Y W, Lortz R and Wang N 2018 Phys. Rev. B 97060505

    [121]

    Kim M, Park G H, Lee J, Lee J H, Park J, Lee H, Lee G H and Lee H J 2017 Nano Lett. 176125

    [122]

    Klinovaja J, Gangadharaiah S and Loss D 2012 Phys. Rev. Lett. 108196804

    [123]

    Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. Lett. 106156809

    [124]

    Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. B 84085452

    [125]

    Egger R and Flensberg K 2012 Phys. Rev. B 85235462

    [126]

    Murra P, Inotani D, and Nitta M 2022 Phys. Rev. B 105214525

    [127]

    Desjardins M M, Contamin L C, Delbecq M R, Dartiailh M C, Bruhat L E, Cubaynes T, Viennot J J, Mallet F, Rohart S, Thiaville A, Cottet A and Kontos T 2019 Nat. Mater. 181060

    [128]

    Klinovaja J, Stano P and Loss D 2012 Phys. Rev. Lett. 109236801

    [129]

    Klinovaja J, Stano P, Yazdani A and Loss D 2013 Phys. Rev. Lett. 111186805

    [130]

    Kjaergaard M, Wolms K and Flensberg K 2012 Phys. Rev. B 85020503

    [131]

    Klinovaja J and Loss D 2013 Phys. Rev. X 3011008

    [132]

    Cottet A, Kontos T and Doucot B 2013 Phys. Rev. B 88195415

    [133]

    van Woerkom D J, Proutski A, van Heck B, Bouman D, Vayrynen J I, Glazman L I, Krogstrup P, Nygard J, Kouwenhoven L P and Geresdi A 2017 Nat. Phys. 13876

    [134]

    Vayrynen J I, Rastelli G, Belzig W and Glazman L I 2015 Phys. Rev. B 92134508

    [135]

    Dartiailh M C, Kontos T, Doucot B and Cottet A 2017 Phys. Rev. Lett. 118126803

    [136]

    Mergenthaler M, Nersisyan A, Patterson A, Esposito M, Baumgartner A, Schönenberger C, Briggs G A D, Laird E A and Leek P J 2021 Phys. Rev. Appl. 15064050

    [137]

    Fatin G L, Matos-Abiague A, Scharf B and Zutic I 2016 Phys. Rev. Lett. 117077002

    [138]

    Liu L J, Han J, Xu L, Zhou J S, Zhao C Y, Ding S J, Shi H W, Xiao M M, Ding L, Ma Z, Jin C H, Zhang Z Y and Peng L M 2020 Science 368850

    [139]

    Mukhopadhyay R, Kane C L and Lubensky T C 2001 Phys. Rev. B 64045120

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, doi: 10.7498/aps.74.20241031
    [2] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, doi: 10.7498/aps.73.20231166
    [3] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论. 物理学报, doi: 10.7498/aps.72.20222470
    [4] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, doi: 10.7498/aps.72.20230502
    [5] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, doi: 10.7498/aps.72.20222159
    [6] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, doi: 10.7498/aps.71.20220596
    [7] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, doi: 10.7498/aps.71.20220029
    [8] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, doi: 10.7498/aps.71.20221304
    [9] 宿非凡, 杨钊华, 赵寿宽, 严海生, 田野, 赵士平. 铌基超导量子比特及辅助器件的制备. 物理学报, doi: 10.7498/aps.70.20211865
    [10] 郑东宁. 超导量子干涉器件. 物理学报, doi: 10.7498/aps.70.20202131
    [11] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, doi: 10.7498/aps.68.20190095
    [12] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, doi: 10.7498/aps.68.20191072
    [13] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172221
    [14] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, doi: 10.7498/aps.64.097202
    [15] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质. 物理学报, doi: 10.7498/aps.61.193601
    [16] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究. 物理学报, doi: 10.7498/aps.61.117104
    [17] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [18] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
    [19] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, doi: 10.7498/aps.58.4162
    [20] 李 宏, 郭华忠, 路 川, 李 玲, 高 洁. 声表面波单电子输运器件中量子线的电学特性研究. 物理学报, doi: 10.7498/aps.57.5863
计量
  • 文章访问数:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回