搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯p-n结在磁场中的电输运热耗散

方静云 孙庆丰

引用本文:
Citation:

石墨烯p-n结在磁场中的电输运热耗散

方静云, 孙庆丰

Thermal dissipation of electric transport in graphene p-n junctions in magnetic field

Fang Jing-Yun, Sun Qing-Feng
PDF
HTML
导出引用
  • 石墨烯是一种特殊的二维材料, 其独特的能带结构允许人们通过电场来调控其载流子的类型和浓度, 因此, 在构建双极型纳米电子器件方面具有潜在应用前景. 本文基于紧束缚格点模型, 利用非平衡格林函数方法及Landauer-Büttiker公式, 研究了石墨烯p-n结在磁场中的电输运热耗散问题. 在强磁场作用下, 结的两边均处于量子霍尔相, 存在拓扑保护的手性边缘态. 直觉上, 这种拓扑保护的手性边缘态应当是无热耗散的. 但本文研究发现, 当有耗散源时, 尽管手性边缘态受到拓扑保护, 热耗散却依然可以发生. 对于完美的石墨烯, 单极结输运时热耗散发生在体系边缘; 偶极结输运时在体系边缘和结的界面处均可以发生热耗散. 当无序存在时, 无论单极结还是偶极结, 无序均能增强热耗散. 此外, 本文还研究了不同位置处的电子能量分布, 发现热耗散是否发生只取决于电子是否处于非平衡分布. 这些结果表明拓扑只能保护电子的传播方向, 却不能禁止热耗散的发生.
    Graphene, a special two-dimensional material, has a unique band structure that allows the type and concentration of carriers to be controlled through a gate voltage, and it has potential applications in bipolar nanoelectronic devices. In this paper, based on the tight-binding model of graphene p-n junctions, by using the nonequilibrium Green’s function method and Landauer-Büttiker formula, the thermal dissipation of electric transport in graphene p-n junctions in a magnetic field is investigated. Under a strong magnetic field, both sides of the junction are in the quantum Hall regime, thus the topologically protected chiral edge states appear. Intuitively, the topologically protected chiral edge states are dissipationless. However, the results show that thermal dissipation can occur in the quantum Hall regime in graphene junctions in the presence of dissipation sources, although the topologically protected chiral edge states still exist. In clean graphene junctions, thermal dissipation occurs mainly at the edge for the unipolar transport, but it occurs both at the edge and at the interface of the junctions for the bipolar transport. In the presence of disorder, thermal dissipation is significantly enhanced both in the unipolar junction and in the bipolar junction, and it increases with disorder strength increasing. Besides, the energy distribution of electrons at different positions is also studied, which shows that the thermal dissipation always occurs as long as the energy distribution is in nonequilibrium. This indicates that the topology can protect only the propagation direction of electrons, but it can not suppress the occurrence of thermal dissipation.
      通信作者: 孙庆丰, sunqf@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303301)和国家自然科学基金 (批准号: 11921005)资助的课题.
      Corresponding author: Sun Qing-Feng, sunqf@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303301) and the National Natural Science Foundation of China (Grant No. 11921005).
    [1]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Halperin 1982 Phys. Rev. B 25 2185Google Scholar

    [6]

    von Klitzing K 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, Zhang L 2019 Nature 569 537Google Scholar

    [8]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) p293

    [9]

    Büttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [10]

    Laughlin 1981 Phys. Rev. B 23 5632Google Scholar

    [11]

    Laughlin 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [12]

    Halbertal D, Cuppens J, Shalom M B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Joselevich E, Geim A K, Zeldov E 2016 Nature 539 407Google Scholar

    [13]

    Halbertal D, Shalom M B, Uri A, Bagani K, Meltzer A Y, Marcus I, Myasoedov Y, Birkbeck J, Levitov L S, Geim A K, Zeldov E 2017 Science 358 1303Google Scholar

    [14]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [15]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [19]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [20]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar

    [21]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [22]

    Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K, Marcus I, Myasoedov Y, Geim K, Perello D J, Zeldov E 2019 Nature 575 628Google Scholar

    [23]

    Zhang G, Gornyi I V, Mirlin A D 2020 Phys. Rev. Res. 2 013337Google Scholar

    [24]

    Fang J Y, Yang N X, Yan Q, Guo A M, Sun Q F 2021 Phys. Rev. B 104 115411Google Scholar

    [25]

    Aharon-Steinberg A, Marguerite A, Perello D J, Bagani K, Holder T, Myasoedov Y, Levitov L S, Geim A K, Zeldov E 2021 Nature 593 528Google Scholar

    [26]

    Anahory Y, Naren H R, Lachman E O, Buhbut Sinai S, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber M E, Klajn R, Zeldov E 2020 Nanoscale 12 3174Google Scholar

    [27]

    Huard B, Sulpizio J A, Stander N, Todd K, Yang B, Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803Google Scholar

    [28]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56Google Scholar

    [29]

    Williams J R, DiCarlo L, Marcus C M 2007 Science 317 638Google Scholar

    [30]

    Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S, Kim P 2007 Phys. Rev. Lett. 99 166804Google Scholar

    [31]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [32]

    Stander N, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807Google Scholar

    [33]

    Cheianov V V, Fal’ko V, Altshuler B L 2007 Science 315 1252Google Scholar

    [34]

    Rycerz A, Tworzydlo Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [35]

    Abanin D A, Levitov L S 2007 Science 317 641Google Scholar

    [36]

    Lohmann T, von Klitzing K, Smet J H 2009 Nano Lett. 9 1973Google Scholar

    [37]

    Wang K, Harzheim A, Taniguchi T, Watanabei K, Lee J U, Kim P 2019 Phys. Rev. Lett. 122 146801Google Scholar

    [38]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [39]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528Google Scholar

    [40]

    Büttiker M 1986 Phys. Rev. Lett. 57 1761Google Scholar

    [41]

    Sheng D N, Sheng L, Weng Z Y 2006 Phys. Rev. B 73 233406Google Scholar

    [42]

    Sun Q F, Xie X C 2010 Phys. Rev. Lett. 104 066805Google Scholar

    [43]

    Long W, Sun Q F, Wang J 2008 Phys. Rev. Lett. 101 166806Google Scholar

    [44]

    Li J, Shen S Q 2008 Phys. Rev. B 78 205308Google Scholar

    [45]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851Google Scholar

    [46]

    Tian J, Jiang Y, Childres I, Cao H, Hu J, Chen Y P 2013 Phys. Rev. B 88 125410Google Scholar

    [47]

    Chen J C, Au Yeung T C, Sun Q F 2010 Phys. Rev. B 81 245417Google Scholar

  • 图 1  (a) 锯齿型石墨烯p-n结示意图, 红色格点表示在这些格点上耦合了虚拟导线, 图中$ D=4, N=12, L=11, M=3 $; (b), (c) 不同无序强度W下电导G随着$ {E}_{\mathrm{R}} $的变化曲线. 当$ \mathrm{W}\ne 0 $时, 无序构型平均取$ 2000 $次. 图(b)中$ {E}_{\mathrm{L}}=-0.1 $($ {\nu }_{\mathrm{L}}=1 $), 图(c)中$ {E}_{\mathrm{L}}=-0.2 $($ {\nu }_{\mathrm{L}}=3 $)

    Fig. 1.  (a) Schematic diagram for a zigzag graphene p-n junction. The red sites indicate that virtual leads are coupled to these sites, and $ D=4, N=12, L=11, M=3 $ in this diagram. (b), (c) The conductance G vs. $ {E}_{\mathrm{R}} $ for different disorder strengths W. Here the conductance is averaged up to 2000 configurations when $ W\ne 0 $. The parameters $ {E}_{\mathrm{L}}=-0.1 $ ($ {\nu }_{\mathrm{L}}=1 $) in panel (b), $ {E}_{\mathrm{L}}=-0.2 $ ($ {\nu }_{\mathrm{L}}=3 $) in panel (c).

    图 2  局域热产生$ {Q}_{\mathrm{L}} $随着格点位置坐标$ (x, y) $的变化, 带箭头的黑色实线代表手性边缘态的数目和传播方向. 符号■, ▲, ◆, ●, ★标记的位置分别是$ (10,  10) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, 在图4中将给出这些位置上的电子能量分布. $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right) $=$ (-0.1, -0.1) $ (a)$ , (-0.2, -0.1) $ (b), $ (-\mathrm{0.1, 0.1}) $ (c), $ (-\mathrm{0.2, 0.2}) $ (d), 分别对应左右填充因子$ ({\nu }_{\mathrm{L}}, {\nu }_{\mathrm{R}})=\left(\mathrm{1, 1}\right) $ (a), $ \left(\mathrm{3, 1}\right) $ (b), $ (1, -1) $ (c), $ (3, -3) $ (d)

    Fig. 2.  Local heat generation $ {Q}_{\mathrm{L}} $ vs. lattice position $ (x, y) $, the black solid lines with arrows represent the number and propagation direction of the chiral edge states. Positions marked by symbols ■, ▲, ◆, ●, ★ are, respectively, $ \left(\mathrm{10, 10}\right) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, and energy distribution of electrons at these positions will be shown in Fig. 4. $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-0.1, -0.1) $ (a), $ (-0.2, -0.1) $ (b), $ (-\mathrm{0.1, 0.1}) $ (c), $ (-\mathrm{0.2, 0.2}) $ (d), which correspond to the left and right filling factors $ ({\nu }_{\mathrm{L}}, {\nu }_{\mathrm{R}})=\left(\mathrm{1, 1}\right) $ (a), $ \left(\mathrm{3, 1}\right) $ (b), $ (1, -1) $ (c), and $ (3, -3) $ (d), respectively.

    图 3  局域热产生$ {Q}_{\mathrm{L}} $随着格点位置坐标$ (x, y) $的变化, 带箭头的黑色实线代表手性边缘态的数目和传播方向. 符号■, ▲, ◆, ●, ★标记的位置分别是$ \left(\mathrm{10, 10}\right) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, 在图4中将给出这些位置上的电子能量分布. (a), (b) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-0.2, -0.1) $; $ \left(\mathrm{c}\right), \left(\mathrm{d}\right) $ $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)= (-\mathrm{0.1, 0.1}) $. (a), (c) 无序强度$ W=1 $; (b), (d) 无序强度$ W= $2. 无序构型平均取$ 400 $

    Fig. 3.  Local heat generation $ {Q}_{\mathrm{L}} $ vs. lattice position $ (x, y) $, the black solid lines with arrows represent the number and propagation direction of the chiral edge states. Positions marked by symbols ■, ▲, ◆, ●, ★ are $ \left(\mathrm{10, 10}\right) $, $ \left(\mathrm{46, 10}\right) $, $ \left(\mathrm{46, 100}\right) $, $ \left(\mathrm{46, 190}\right) $, $ \left(\mathrm{10, 190}\right) $, respectively, and energy distribution of electrons at these positions will be shown in Fig. 4. (a), (b) $\left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)= $$ (-0.2, -0.1)$; (c), (d) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-\mathrm{0.1, 0.1}) $. (a), (c) Disorder strength $ W=1 $; (b) (d)$ W= $2. Here the local heat generation is averaged up to 400 configurations.

    图 4  不同位置处的分布函数F随着能量E的变化, 符号■, ▲, ◆, ●, ★对应图2图3中标记的位置. (a), (b) $\left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)= $$ (-0.2, -0.1)$; (c), (d) $ (-\mathrm{0.1, 0.1}) $. (a), (c) 无序强度$ W=0 $; (b), (d) $ W=1 $. 当$ \mathrm{W}\ne 0 $时, 无序构型平均取$ 400 $

    Fig. 4.  Distribution function F vs. energy E for different positions, the symbols ■, ▲, ◆, ●, ★ correspond to positions marked in Fig. 2 and Fig. 3. (a), (b) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-0.2, -0.1) $; (c), (d) $ \left({E}_{\mathrm{L}}, {E}_{\mathrm{R}}\right)=(-\mathrm{0.1, 0.1}) $. (a), (c) Disorder strength $ W=0 $; (b), (d) $ W= $1. Here distribution function F is averaged up to 400 configurations when $ W\ne 0 $.

  • [1]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [5]

    Halperin 1982 Phys. Rev. B 25 2185Google Scholar

    [6]

    von Klitzing K 2019 Phys. Rev. Lett. 122 200001Google Scholar

    [7]

    Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z, Zhang L 2019 Nature 569 537Google Scholar

    [8]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) p293

    [9]

    Büttiker M 1988 Phys. Rev. B 38 9375Google Scholar

    [10]

    Laughlin 1981 Phys. Rev. B 23 5632Google Scholar

    [11]

    Laughlin 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [12]

    Halbertal D, Cuppens J, Shalom M B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Joselevich E, Geim A K, Zeldov E 2016 Nature 539 407Google Scholar

    [13]

    Halbertal D, Shalom M B, Uri A, Bagani K, Meltzer A Y, Marcus I, Myasoedov Y, Birkbeck J, Levitov L S, Geim A K, Zeldov E 2017 Science 358 1303Google Scholar

    [14]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [15]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [18]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [19]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379Google Scholar

    [20]

    Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar

    [21]

    Gusynin V P, Sharapov S G 2005 Phys. Rev. Lett. 95 146801Google Scholar

    [22]

    Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K, Marcus I, Myasoedov Y, Geim K, Perello D J, Zeldov E 2019 Nature 575 628Google Scholar

    [23]

    Zhang G, Gornyi I V, Mirlin A D 2020 Phys. Rev. Res. 2 013337Google Scholar

    [24]

    Fang J Y, Yang N X, Yan Q, Guo A M, Sun Q F 2021 Phys. Rev. B 104 115411Google Scholar

    [25]

    Aharon-Steinberg A, Marguerite A, Perello D J, Bagani K, Holder T, Myasoedov Y, Levitov L S, Geim A K, Zeldov E 2021 Nature 593 528Google Scholar

    [26]

    Anahory Y, Naren H R, Lachman E O, Buhbut Sinai S, Uri A, Embon L, Yaakobi E, Myasoedov Y, Huber M E, Klajn R, Zeldov E 2020 Nanoscale 12 3174Google Scholar

    [27]

    Huard B, Sulpizio J A, Stander N, Todd K, Yang B, Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803Google Scholar

    [28]

    Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Nature 446 56Google Scholar

    [29]

    Williams J R, DiCarlo L, Marcus C M 2007 Science 317 638Google Scholar

    [30]

    Özyilmaz B, Jarillo-Herrero P, Efetov D, Abanin D A, Levitov L S, Kim P 2007 Phys. Rev. Lett. 99 166804Google Scholar

    [31]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [32]

    Stander N, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807Google Scholar

    [33]

    Cheianov V V, Fal’ko V, Altshuler B L 2007 Science 315 1252Google Scholar

    [34]

    Rycerz A, Tworzydlo Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [35]

    Abanin D A, Levitov L S 2007 Science 317 641Google Scholar

    [36]

    Lohmann T, von Klitzing K, Smet J H 2009 Nano Lett. 9 1973Google Scholar

    [37]

    Wang K, Harzheim A, Taniguchi T, Watanabei K, Lee J U, Kim P 2019 Phys. Rev. Lett. 122 146801Google Scholar

    [38]

    Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512Google Scholar

    [39]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528Google Scholar

    [40]

    Büttiker M 1986 Phys. Rev. Lett. 57 1761Google Scholar

    [41]

    Sheng D N, Sheng L, Weng Z Y 2006 Phys. Rev. B 73 233406Google Scholar

    [42]

    Sun Q F, Xie X C 2010 Phys. Rev. Lett. 104 066805Google Scholar

    [43]

    Long W, Sun Q F, Wang J 2008 Phys. Rev. Lett. 101 166806Google Scholar

    [44]

    Li J, Shen S Q 2008 Phys. Rev. B 78 205308Google Scholar

    [45]

    Sancho M P L, Sancho J M L, Rubio J 1985 J. Phys. F: Met. Phys. 15 851Google Scholar

    [46]

    Tian J, Jiang Y, Childres I, Cao H, Hu J, Chen Y P 2013 Phys. Rev. B 88 125410Google Scholar

    [47]

    Chen J C, Au Yeung T C, Sun Q F 2010 Phys. Rev. B 81 245417Google Scholar

  • [1] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论. 物理学报, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [2] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究. 物理学报, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [3] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究. 物理学报, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [4] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [5] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [6] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [7] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [8] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [9] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [10] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [11] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [12] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [13] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [14] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [15] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究. 物理学报, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [17] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质. 物理学报, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [18] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [19] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [20] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
计量
  • 文章访问数:  2813
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-01-30
  • 上网日期:  2022-02-28
  • 刊出日期:  2022-06-20

/

返回文章
返回