搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数量子霍尔液体中的几何自由度及类引力子元激发

杨昆

引用本文:
Citation:

分数量子霍尔液体中的几何自由度及类引力子元激发

杨昆

Geometric degrees of freedom and graviton-like excitations in fractional quantum Hall liquids

Kun Yang
PDF
HTML
导出引用
  • 拓扑在凝聚态物理中的应用始于量子霍尔效应的研究, 并逐渐成为现代凝聚态物理的主旋律. 其重要性在于它描述物理系统的普适性质. 但基于拓扑场论的分数量子霍尔液体宏观描述并非完备. 本文从微观角度出发讨论分数量子霍尔液体中的几何自由度及其量子动力学, 揭示其基本元激发为自旋为2的类引力子并据有特定手性, 着重讨论该手征类引力子的实验探测.
    The application of topology in condensed matter physics began with the study of the quantum Hall effect and has gradually become the main theme of modern condensed matter physics. Its importance lies in capturing the universal properties of physical systems. In particular, fractional quantum Hall liquids are the most strongly correlated systems and exhibit topological order. Its most important and universal feature is the quasiparticle (quasi-hole) elementary excitations with fractional charge and statistics, which are captured by topological field theories. However, such a macroscopic description of fractional quantum Hall liquids is not complete, because it misses an important geometric aspect that is important for both universal and non-universal properties of the system. In particular, the nature of its electrically neutral elementary excitations has not been fully understood until recently. Finite-wavelength electrically neutral elementary excitations can be viewed as charge density waves or bound states of quasi-particles-quasi-holes. However, such pictures are not applicable in the long-wave limit, so a new theoretical framework is needed. In this theoretical framework, one of the most basic degrees of freedom is the metric tensor that describes the electron correlation. Figuratively speaking, it describes the geometric shape of the correlation hole around the electron. Therefore, this theory is called the geometric theory of the fractional quantum Hall effect. Since the metric tensor is also the basic degree of freedom of the theory of gravity, this theoretical framework can be regarded as a certain type of quantum theory of gravity. Its basic elementary excitation is a spin-two graviton. This perspective discusses the geometric degrees of freedom and its quantum dynamics in quantum Hall liquids from a microscopic perspective, revealing that its basic elementary excitations are spin-two graviton-like particles with specific chirality, and focuses on the experimental detection of this chiral graviton-like particle.The figure illustrates graviton-like excitation and its chirality in the 1/3 Laughlin state using Xiao-Gang Wen’s dancing pattern analogy [Wen X G 2004 Quantum Field Theory of Many-body Systems: From the Origin of Sound to An Origin of Light and Electrons (Oxford: Oxford University Press)], with left panel showing that in the Laughlin ground state (or dancing pattern), the minimum relative angular momentum of a pair of dancers is three, ensuring sufficient separation between them, and with right panel displaying that a graviton-like excitation corresponding to a pair whose relative angular momentum changes from three to one (antisymmetry of fermion wave function only allows for odd relative angular momenta). This is not allowed in the Laughlin state, as a result, it corresponds to an excitation which is the “graviton” detected by Liang et al. [Liang J H, Liu Z Y, Yang Z H, et al. 2024 Nature 628 78]. In other words, the Raman process creates a “graviton” by turning a pair with relative angular momentum three (left panel) into a pair with relative angular momentum one (right panel). The angular momentum of this excitation is $1- 3 =-2 $, corresponding to a graviton with chirality –2. For hole states like 2/3, because the chirality is reversed for holes, graviton chirality becomes +2. This figure is adopted from Yang [Yang K 2024 The Innovation 5 100641].
      通信作者: 杨昆, kunyang@magnet.fsu.edu
    • 基金项目: 美国国家科学基金会(批准号: DMR-2315954, DMR-2128556) 和佛罗里达州资助的课题.
      Corresponding author: Kun Yang, kunyang@magnet.fsu.edu
    • Funds: Project supported by the National Science Foundation of USA (Grant Nos. DMR-2315954, DMR-2128556) and the State of Florida, USA.
    [1]

    Wen X G 2004 Quantum Field Theory of Many-body Systems: From the Origin of Sound to An Origin of Light and Electrons (Oxford: Oxford University Press

    [2]

    Girvin S M, MacDonald A H, Platzman P M 1986 Phys. Rev. B 33 2481Google Scholar

    [3]

    Haldane F D M 2011 Phys. Rev. Lett. 107 116801Google Scholar

    [4]

    Qiu R Z, Haldane F D M, Wan X, Yang K, Yi S 2012 Phys. Rev. B 85 115308Google Scholar

    [5]

    Yang K 2013 Phys. Rev. B 88 241105Google Scholar

    [6]

    Halperin B I, Lee P A, Read N 1993 Phys. Rev. B 47 7312Google Scholar

    [7]

    Jo I, Rosales K A V, Mueed M A, Pfeiffer L N, West K W, Baldwin K W, Winkler R, Padmanabhan M, Shayegan M 2017 Phys. Rev. Lett. 119 016402Google Scholar

    [8]

    Yang K 2016 Phys. Rev. B 93 161302Google Scholar

    [9]

    Liu Z, Gromov A, Papic Z 2018 Phys. Rev. B 98 155140Google Scholar

    [10]

    Liou S F, Haldane F D M, Yang K, Rezayi E H 2019 Phys. Rev. Lett. 123 146801Google Scholar

    [11]

    Nguyen D X, Haldane F D M, Rezayi E H, Son D T, Yang K 2022 Phys. Rev. Lett. 128 246402Google Scholar

    [12]

    Liang J H, Liu Z Y, Yang Z H, Huang Y L, Wurstbauer U, Dean C R, West K W, Pfeiffer L N, Du L J, Pinczuk P 2024 Nature 628 78Google Scholar

    [13]

    Yang K 2024 The Innovation 5 100641Google Scholar

    [14]

    Nguyen D X, Son D T 2021 Phys. Rev. Res. 3 023040Google Scholar

    [15]

    Haldane F D M, Rezayi E H, Yang K 2021 Phys. Rev. B 104 L121106Google Scholar

    [16]

    Ma K K W, Peterson M R, Scarola V W, Yang K 2023 Encyclopedia of Condensed Matter Physics (2nd Ed.) (Academic Press

    [17]

    万歆, 王正汉, 杨昆 2013 物理 42 558

    Wan X, Wang Z H, Yang K 2013 Physics 42 558

    [18]

    Ma K K W, Yang K 2022 Phys. Rev. B 105 045306Google Scholar

    [19]

    Ma K K W 2022 arXiv: 2209.11119

    [20]

    Ma K K W, Yang K 2024 arXiv: 2408.00058

  • 图 1  Laughlin态的两体关联函数 (a)各向异性的Laughlin态的一个代表; (b)各向同性的Laughlin 波函数. 两者关联空穴面积相同, 引自文献[4]

    Fig. 1.  Two-body correlation function of the Laughlin state: (a) A representative of the anisotropic Laughlin state; (b) the isotropic Laughlin wave function. The areas of the two correlation holes are the same. From Ref. [4].

    图 2  用Wen[1] 的舞蹈规则类比来说明1/3填充Laughlin 态中的类引力子激发及其手性, 左图为在 Laughlin 基态(或舞蹈规则)中, 一对舞者的最小相对角动量为3, 以确保他们之间有足够的距离; 右图为类引力子激发对应于相对角动量从3变为1的一个电子对(费米子波函数的反对称性只允许奇数相对角动量); 这在 Laughlin 态下是不允许的, 因此, 它对应于一种激发, 即文献[12]检测到的“引力子”, 换句话说, 拉曼过程通过将相对角动量为3的电子对(左图)变成相对角动量为1的电子对(右图)来产生“引力子”; 该激发的角动量为 1 – 3 = –2, 对应引力子手性为–2. 对于2/3及3/5填充的空穴状态, 由于空穴的手性与电子相反, 引力子手性变为 +2, 引自文献[13]

    Fig. 2.  Illustration of graviton-like excitation and its chirality in the 1/3 Laughlin state using Wen’s[1] dancing pattern analogy. Left panel: In the Laughlin ground state (or dancing pattern), the minimum relative angular momentum of a pair of dancers is 3, ensuring sufficient separation between them. Right panel: A graviton-like excitation corresponds to a pair whose relative angular momentum changes from 3 to 1 (antisymmetry of fermion wave function only allows for odd relative angular momenta). This is not allowed in the Laughlin state, as a result, it corresponds to an excitation which is the “graviton” detected by Liang et al.[12]. In other words, the Raman process creates a “graviton” by turning a pair with relative angular momentum 3 (left panel) to a pair with relative angular momentum 1 (right panel). The angular momentum of this excitation is 1 – 3 = –2, corresponding to graviton chirality –2. For hole states like 2/3 and 3/5, because the chirality is reversed for holes, graviton chirality becomes +2. From Ref. [13].

    图 3  圆极化偏振的拉曼散射, 不同入射光与出射光偏振的组合对应于系统不同角动量的元激发, 在1/3填充的Laughlin态中, 只有对应于角动量为–2的组合有共振峰(见右图绿色曲线), 与文献[10]的预言相符, 引自文献[12]

    Fig. 3.  Circularly polarized Raman scattering. Different combinations of incident and outgoing light polarization couple to elementary excitations of different angular momentums in the system. In the 1/3 filled Laughlin state, only the combination corresponding to the angular momentum –2 has a resonance peak (see the green curve on the right), which is consistent with the prediction of Ref. [10]. Cited from Ref. [12].

  • [1]

    Wen X G 2004 Quantum Field Theory of Many-body Systems: From the Origin of Sound to An Origin of Light and Electrons (Oxford: Oxford University Press

    [2]

    Girvin S M, MacDonald A H, Platzman P M 1986 Phys. Rev. B 33 2481Google Scholar

    [3]

    Haldane F D M 2011 Phys. Rev. Lett. 107 116801Google Scholar

    [4]

    Qiu R Z, Haldane F D M, Wan X, Yang K, Yi S 2012 Phys. Rev. B 85 115308Google Scholar

    [5]

    Yang K 2013 Phys. Rev. B 88 241105Google Scholar

    [6]

    Halperin B I, Lee P A, Read N 1993 Phys. Rev. B 47 7312Google Scholar

    [7]

    Jo I, Rosales K A V, Mueed M A, Pfeiffer L N, West K W, Baldwin K W, Winkler R, Padmanabhan M, Shayegan M 2017 Phys. Rev. Lett. 119 016402Google Scholar

    [8]

    Yang K 2016 Phys. Rev. B 93 161302Google Scholar

    [9]

    Liu Z, Gromov A, Papic Z 2018 Phys. Rev. B 98 155140Google Scholar

    [10]

    Liou S F, Haldane F D M, Yang K, Rezayi E H 2019 Phys. Rev. Lett. 123 146801Google Scholar

    [11]

    Nguyen D X, Haldane F D M, Rezayi E H, Son D T, Yang K 2022 Phys. Rev. Lett. 128 246402Google Scholar

    [12]

    Liang J H, Liu Z Y, Yang Z H, Huang Y L, Wurstbauer U, Dean C R, West K W, Pfeiffer L N, Du L J, Pinczuk P 2024 Nature 628 78Google Scholar

    [13]

    Yang K 2024 The Innovation 5 100641Google Scholar

    [14]

    Nguyen D X, Son D T 2021 Phys. Rev. Res. 3 023040Google Scholar

    [15]

    Haldane F D M, Rezayi E H, Yang K 2021 Phys. Rev. B 104 L121106Google Scholar

    [16]

    Ma K K W, Peterson M R, Scarola V W, Yang K 2023 Encyclopedia of Condensed Matter Physics (2nd Ed.) (Academic Press

    [17]

    万歆, 王正汉, 杨昆 2013 物理 42 558

    Wan X, Wang Z H, Yang K 2013 Physics 42 558

    [18]

    Ma K K W, Yang K 2022 Phys. Rev. B 105 045306Google Scholar

    [19]

    Ma K K W 2022 arXiv: 2209.11119

    [20]

    Ma K K W, Yang K 2024 arXiv: 2408.00058

  • [1] 王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏. 磁子学中的拓扑物态与量子效应. 物理学报, 2023, 72(5): 057503. doi: 10.7498/aps.72.20221997
    [2] 曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和. 基于CHSH不等式几何解释的“X”态量子非局域关联检验. 物理学报, 2022, 71(17): 170302. doi: 10.7498/aps.71.20220445
    [3] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [4] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [5] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [6] 叶鹏. 具有全局对称性的强关联拓扑物态的规范场论. 物理学报, 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [7] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [8] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [9] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [10] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [11] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [12] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应. 物理学报, 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [13] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [14] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [15] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [16] 阎世英, 马美仲, 朱正和. B2H6分子的几何构型. 物理学报, 2005, 54(7): 3106-3110. doi: 10.7498/aps.54.3106
    [17] 强稳朝. 自引力旋转球的整体变形几何. 物理学报, 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [18] 李新洲, 袁宁一, 刘道军, 郝建纲. 广义Schwarzschild几何的引力微扰. 物理学报, 2000, 49(6): 1031-1034. doi: 10.7498/aps.49.1031
    [19] 高 阳, 章豫梅, 陈 鸿. 磁场对一维Heisenberg链低能行为的影响. 物理学报, 2000, 49(8): 1586-1590. doi: 10.7498/aps.49.1586
    [20] 王珮, 侯伯元, 侯伯宇, 郭汉英. 手征模型的对偶性及其与sine-Gordon方程的几何关联. 物理学报, 1984, 33(3): 294-301. doi: 10.7498/aps.33.294
计量
  • 文章访问数:  1309
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-08-03
  • 上网日期:  2024-08-09
  • 刊出日期:  2024-09-05

/

返回文章
返回