搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工规范场调控下的单光子散射

汪润婷 王旭东 梅锋 肖连团 贾锁堂

引用本文:
Citation:

人工规范场调控下的单光子散射

汪润婷, 王旭东, 梅锋, 肖连团, 贾锁堂

Controlling single-photon scattering via artificial gauge fields

WANG Runting, WANG Xudong, MEI Feng, XIAO Liantuan, JIA Suotang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 本文研究了人工规范场调控下超导量子比特-SSH拓扑光子晶格耦合体系中的单光子散射。通过解析计算单光子散射系数,本文揭示了人工规范场对SSH拓扑晶格上下能带中的单光子散射具有完全不同的调控作用,包括上能带全透射和下能带全反射。其次,本文进一步证明人工规范场调控下单光子散射相对于晶格动量和上下能带具有高度的对称性。反过来,本文还发现人工规范场调控下单光子反射系数可以不依赖晶格耦合强度,只依赖晶格的拓扑特性,可用于探测光子晶格的拓扑不变量。最后,本文还将人工规范场调控下的单光子散射推广至超导量子比特-拓扑光子晶格不同耦合构型中。这些结果为拓扑光子晶格中光子输运的调控提供了新的视角和方法。
    We investigate the control mechanisms of single-photon scattering in a hybrid system consisting of superconducting qubits coupled to an SSH (Su-Schrieffer-Heeger) topological photonic lattice under the influence of an artificial gauge field. This research is driven by the growing interest at the intersection of quantum optics and condensed matter physics, particularly in the realm of topological quantum optics, where the robustness of photon transport against defects and impurities can be exploited for quantum information processing. To achieve this, we develop a theoretical model that incorporates the phase of the artificial gauge field into the coupling between superconducting qubits and the SSH photonic lattice. Using the probability-amplitude method, we analytically derive expressions for the reflection and transmission amplitudes of single photons. Our results show that the artificial gauge field can effectively control single photon scattering in both the upper and lower energy bands of the SSH lattice, enabling total transmission in the upper band and total reflection in the lower band. This band-dependent scattering behavior exhibits a high degree of symmetry with respect to the lattice momentum and energy bands. Importantly, the reflection coefficient can be made independent of the lattice coupling strength and depends solely on the topological properties of the lattice. This finding suggests a robust method for detecting topological invariants in photonic lattices. Furthermore, we extend our analysis to various coupling configurations between superconducting qubits and the photonic lattice, highlighting the versatility of the artificial gauge field in manipulating photon transport. These findings not only provide new insights into the control of photon transport in topological photonic lattices but also open the door to the development of novel quantum optical devices and robust quantum information processing platforms.
  • [1]

    Sheremet A S, Petrov M I, Iorsh I V, Poshakinskiy A V, Poddubny A N 2023Rev. Mod. Phys. 95 015002

    [2]

    Mehrabad M J, Mittal S, Hafezi M 2023Phys. Rev. A 108 040101

    [3]

    Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q, Gong Q 2021Adv. Opt. Mater. 9 2001739

    [4]

    Lumer Y, Bandres M A, Heinrich M, Maczewsky L J, Herzig-Sheinfux H, Szameit A, Segev M 2019Nat. Photonics 13 339

    [5]

    Zhou L, Gong Z R, Liu Y, Sun C P, Franco N 2008Phys. Rev. Lett. 101 100501

    [6]

    Zhou L, Yang L P, Li Y, Sun C P 2013Phys. Rev. Lett. 111 103604

    [7]

    Kannan B, Almanakly A, Sung Y, Paolo A D, Rower D A, Braumülleret J, Melville A, Niedzielski B M, Karamlou A, Serniak K, Vepsäläinen A, Schwartz M E, Yoder J L, Winik R, Wang J I J, Orlando T P, Gustavsson S, Grover J A, Oliver W D 2023Nat. Phys. 19 394

    [8]

    Xu H S, Jin L 2022Phys. Rev. Res. 4 L032015

    [9]

    Xu H S, Jin L 2023Phys. Rev. Res. 5 L042005

    [10]

    Zhou L, Dong H, Liu Y, Sun C P, Nori F 2008Phys. Rev. A 78 063827

    [11]

    Liao J Q, Huang J F, Liu Y, Kuang L M, Sun C P 2009Phys. Rev. A 80 014301

    [12]

    Liao J Q, Gong Z R, Zhou L, Liu Y, Sun C P, Nori F 2010Phys. Rev. A 81 042304

    [13]

    Zhou L, Kuang L M 2010Phys. Rev. A 82 042113

    [14]

    Liao J Q, Cheung H K, Law C K 2012Phys. Rev. A 85 025803

    [15]

    Zhou L, Chang Y, Dong H, Kuang L M, Sun C P 2012Phys. Rev. A 85 013806

    [16]

    Liao J Q, Law C K 2013Phys. Rev. A 87 043809

    [17]

    Wang Z H, Zhou L, Li Y, Sun C P 2014Phys. Rev. A 89 053813

    [18]

    Xu X W, Chen A X, Li Y, Liu Y 2017 Phys. Rev. A 95 063808

    [19]

    Jin L 2018 Phys. Rev. A 98 022117

    [20]

    Wang Z, Du L, Li Y, Liu Y 2019 Phys. Rev. A 100 053809

    [21]

    Jin L, Song Z 2021Chinese Phys. Lett. 38 024202

    [22]

    Nie W, Shi T, Nori F, Liu Y 2021Phys. Rev. Appl. 15 044041

    [23]

    Yin X L, Liu Y H, Huang J F, Liao J Q 2022Phys. Rev. A 106 013715

    [24]

    Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, Xia K 2022Phys. Rev. Lett. 128 203602

    [25]

    Zhou J, Yin X L, Liao J Q 2023Phys. Rev. A 107 063703

    [26]

    Xu H S, Jin L 2023Phys. Rev. Res. 5 L042005

    [27]

    Xu H S, Jin L 2024Phys. Rev. Res. 6 L022006

    [28]

    Bello M, Platero G, Cirac J I, González-Tudela A 2019Sci. Adv. 5 eaaw0297

    [29]

    Kim E, Zhang X, Ferreira V S, Banker J, K. Iverson J, Sipahigil A, Bello M, González-Tudela A, Mirhosseini M, Painter O 2021Phys. Rev. X 11 011015

    [30]

    Joshi C, Yang F, Mirhosseini M 2023Phys. Rev. X 13 021039

    [31]

    Cheng W, Wang Z, Liu Y 2022Phys. Rev. A 106 033522

  • [1] 郝佳鑫, 徐志浩. 复相互作用调制的两粒子系统中的局域化转变. 物理学报, doi: 10.7498/aps.74.20241691
    [2] 崔娜玮, 高嘉忻, 董慧薷, 李传奇, 罗小兵, 肖进鹏. 磁性原子链中的拓扑超导相竞争. 物理学报, doi: 10.7498/aps.73.20241095
    [3] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, doi: 10.7498/aps.73.20231850
    [4] 杨昆. 分数量子霍尔液体中的几何自由度及类引力子元激发. 物理学报, doi: 10.7498/aps.73.20240994
    [5] 关欣, 陈刚. 双链超导量子电路中的拓扑非平庸节点. 物理学报, doi: 10.7498/aps.72.20230152
    [6] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, doi: 10.7498/aps.71.20220029
    [7] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, doi: 10.7498/aps.71.20220353
    [8] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [9] 李牮. 基于Yu-Shiba-Rusinov态的拓扑超导理论. 物理学报, doi: 10.7498/aps.69.20200831
    [10] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索. 物理学报, doi: 10.7498/aps.69.20190959
    [11] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, doi: 10.7498/aps.69.20191627
    [12] 严忠波. 高阶拓扑绝缘体和高阶拓扑超导体简介. 物理学报, doi: 10.7498/aps.68.20191101
    [13] 王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰. 拓扑光子学研究进展. 物理学报, doi: 10.7498/aps.68.20191437
    [14] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, doi: 10.7498/aps.68.20191317
    [15] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [16] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, doi: 10.7498/aps.67.20181857
    [17] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, doi: 10.7498/aps.67.20180235
    [18] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, doi: 10.7498/aps.66.227804
    [19] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, doi: 10.7498/aps.66.224203
    [20] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, doi: 10.7498/aps.66.227802
计量
  • 文章访问数:  39
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回