搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含两能级原子系综的复合光力系统中的和边带效应

廖庆洪 唐志安 敖佳文

引用本文:
Citation:

含两能级原子系综的复合光力系统中的和边带效应

廖庆洪, 唐志安, 敖佳文

Sum sideband effect in hybrid optomechanical system with two-level atom ensemble

LIAO Qinghong, TANG Zhian, AO Jiawen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 腔光力学作为纳米光子学与量子力学的交叉学科, 为研究微腔内光子与机械模式的声子之间的光力耦合作用提供了一个独特的平台. 其在量子物理领域存在广泛的潜在应用, 已成为当今物理研究的前沿课题. 本文提出了一种利用两能级原子系综增强和边带产生的理论方案. 通过引入两能级原子介质, 研究了原子系综的失谐频率对和边带产生效率的影响. 结果表明不论在原子红失谐还是蓝失谐下都可以使和边带的生成效率得到显著增强, 并且对于红失谐状态下的依赖性更大, 其增强效果更加明显. 此外, 本文还考虑了泵浦功率的影响, 通过选择适当的泵浦功率可以有效地增强输出和边带信号的强度. 另外, 讨论了腔-原子耦合强度与原子衰减率对于和边带信号传输特性的影响, 通过测量和边带频率谱的峰值, 进而检测出腔与原子间的耦合强度. 这为腔-原子耦合强度的精密测量提供了一种简单便捷的方法, 同时也为和边带信号传输的调控提供有益的借鉴.
    Cavity optomechanics, as a cross-discipline between nanophotonics and quantum mechanics, provides a unique platform for investigating optomechanical coupling between photons in microcavities and phonons from mechanical modes. It has a wide range of potential applications in quantum physics, and now it has become a hot topic. A theoretical scheme to enhance the sum sideband generation (SSG) via a two-level atom ensemble is proposed. The effect of the atomic ensemble’s detuning frequency on the efficiency of the SSG is considered by introducing a two-level atom medium. The results indicate that the efficiency of the generating sideband can be significantly enhanced under either red or blue detuning of the atoms, with greater dependence and more pronounced enhancement under the red detuning. In addition, we also consider the effect of pump power, which can effectively enhance the intensity of the output signal by selecting the appropriate pump power. More interestingly, the sensitivity of SSG to atomic detuning also indicates that the precise control of the atomic detuning frequency can achieve the fine-tuning of the SSG process. Furthermore, the cavity-atom coupling strength and atom decay rate are discussed for the transmission characteristics of the sum sideband signals. It is found that the efficiency of SSG can be effectively adjusted by the cavity-atom coupling strength and atom decay rate. The results show that the efficiency of SSG can be significantly improved by optimizing system parameters. The method of enhancing SSG may have potential application prospects in measuring high-precision weak forces and on-chip manipulation of light propagation.
  • 图 1  含有两能级原子系综的复合光力系统模型图

    Fig. 1.  Hybrid optomechanical system model diagram with a two-level atom ensemble.

    图 2  (a)上和边带和(b)下和边带的效率(对数形式)作为原子失谐频率${\varDelta _1}$和失谐频率${\delta _1}$的函数, 其中${\delta _2} = $$ 0.05{\omega _{\text{m}}}$, 具体参数为$ G/(2\text{π)}=0.4\text{ GHz}/\text{nm} $, ${\gamma }_{\text{m}}/(2\text{π})= $$ 100\text{Hz} $, $ \varDelta ={\omega }_{\text{m}} $, $ m=10\text{ ng} $, ${\gamma }_{\text{a}}/(2\text{π)}=2.875\text{ MHz} $, $\kappa /\text{(2π})=2\text{ MHz} $, ${\omega }_{\text{m}}/\text{(2π)}=10\text{ MHz} $, ${P}_{1}={P}_{2}=0.5\text{ μW} $, ${P}_{\text{c}}=5\text{ mW} $, ${\lambda }_{\text{c}}=794.98\text{ nm} $

    Fig. 2.  The efficiencies (in logarithmic form) of (a) upper sum sideband generation (USSG) and (b) lower sum sideband generation (LSSG) as a function of the atomic detuning frequency ${\varDelta _1}$ and the detuning frequency ${\delta _1}$, where ${\delta _2} = 0.05{\omega _{\text{m}}}$. The specific parameters are as follows: $ G/(2\text{π)}=0.4\text{ GHz}/\text{nm} $, ${\gamma }_{\text{m}}/(2\text{π})=100\text{ Hz} $, $ \varDelta ={\omega }_{\text{m}} $, $m= $$ 10\text{ ng} $, ${\gamma }_{\text{a}}/(2\text{π)}=2.875\text{ MHz} $, $\kappa /\text{(2π})=2\text{ MHz} $, ${\omega }_{\text{m}}/\text{(2π)}= $$ 10\text{ MHz} $, ${P}_{1}={P}_{2}=0.5\text{ μW} $, ${P}_{\text{c}}=5\text{ mW} $, $ {\lambda }_{\text{c}}=794.98 \text{ nm} $

    图 3  ${\delta _2} = 0.05{\omega _{\text{m}}}$的USSG(上和边带)(a)和LSSG(下和边带)(b)的效率(对数形式)作为控制功率$ {p_{\text{c}}} $和失谐频率${\delta _1}$的函数, 其他参数与图2一致

    Fig. 3.  The efficiencies (in logarithmic form) of (a) USSG and (b) LSSG as a function of the control field power $ {p_{\text{c}}} $ and the detuning frequency ${\delta _1}$ for ${\delta _2} = 0.05{\omega _{\text{m}}}$, the other parameters are the same as those in Fig. 2.

    图 4  在不同的原子失谐${\varDelta _1}$下, 输出场和边带的效率$\lg \eta _{\text{s}}^{{ \pm }}$与归一化失谐$ {{{\delta _1}} {/ } {{\omega _{\text{m}}}}} $的函数关系, 其他参数同图2一致

    Fig. 4.  The efficiency $\lg \eta _{\text{s}}^{{ \pm }}$ of the output field sum sideband as a function of the normalized detuning $ {{{\delta _1}} {/ } {{\omega _{\text{m}}}}} $ for different atom detuning ${\varDelta _1}. $ The other parameters are the same as those in Fig. 2.

    图 5  (a), (b)不同${g_{{\text{ac}}}}$值和边带与${\delta _1}$的效率(对数形式), 其中$ {g_{{\text{ac}}}} = 2{\text{π}} \times 2 {\text{ kHz}} $(品红色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 6 {\text{ kHz}} $(蓝色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 8 {\text{ kHz}} $(黑色实线), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 10 {\text{ kHz}} $(绿色实线), $\varDelta = {\varDelta _1} = {\omega _{\text{m}}}$, 其他参数与图2相同

    Fig. 5.  (a) , (b)Plots the efficiency (in logarithmic form) of USSG and LSSG versus ${\delta _1}$ for different values of ${g_{{\text{ac}}}}$, where $ {g_{{\text{ac}}}} = 2{\text{π}} \times 2 {\text{ kHz}} $ (magenta line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 6 {\text{ kHz}} $ (blue line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times 8 {\text{ kHz}} $ (black line), $ {g_{{\text{ac}}}} = 2{\text{π}} \times $$ 10 {\text{ kHz}} $ (green line), $\varDelta = {\varDelta _1} = {\omega _{\text{m}}}$, the other parameters are the same as those in Fig. 2.

    图 6  (a), (b)不同${\gamma _a}$值和边带与${\delta _1}$的效率(对数形式), 其中$ {\gamma _a} = 2{\text{π}} \times 2 {\text{ MHz}} $(品红色实线), $ {\gamma _a} = 2{\text{π}} \times 4 {\text{ MHz}} $(绿色实线), $ {\gamma _a} = 2{\text{π}} \times 6 {\text{ MHz}} $(黑色实线), ${g_{{\text{ac}}}} = 2{\text{π}} \times 10 {\text{ kHz}}$, 其他参数与图2相同

    Fig. 6.  (a), (b) Plots the efficiency (in logarithmic form) of USSG and LSSG versus ${\delta _1}$ for different values of ${\gamma _a}$, where $ {\gamma _a} = 2{\text{π}} \times 2 {\text{ MHz}} $ (magenta line), $ {\gamma _a} = 2{\text{π}} \times 4 {\text{ MHz}} $ (green line), $ {\gamma _a} = 2{\text{π}} \times 6 {\text{ MHz}} $ (black line), ${g_{{\text{ac}}}} = 2{\text{π}} \times $$ 10 {\text{ kHz}}$, the other parameters are the same as those in Fig. 2

  • [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp1–560

    [3]

    Aspelmeyer M, Meystre P, Schwab K 2012 Phys. Today 65 29

    [4]

    Forbes A, Dudley A, McLaren M 2016 Adv. Opt. Photonics 8 200Google Scholar

    [5]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2020 物理学报 64 164211

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2020 Acta Phys. Sin. 64 164211

    [6]

    Xiong H, Wu Y 2018 Appl. Phys. Rev. 5 031305Google Scholar

    [7]

    Wang B, Liu Z X, Jia X, Xiong H, Wu Y 2018 Commun. Phys. 1 43Google Scholar

    [8]

    Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [9]

    贺庆 2019 博士学位论文 (武汉: 华中科技大学)

    He Q 2019 Ph. D. Dissertation(Wuhan: Huazhong University of Science and Technology

    [10]

    Wang H, Gu X, Liu Y, Miranowicz A, Nori F 2014 Phys. Rev. A 90 023817Google Scholar

    [11]

    Kong C, Li S, You C, Xiong H, Wu Y 2018 Sci. Rep. 8 1060Google Scholar

    [12]

    Shen R C, Li J, Fan Z Y, Wang Y P , You J Q 2022 Phys. Rev. Lett. 129 123601

    [13]

    Xu Y, Liu J Y, Liu W, Xiao Y F 2021 Phys. Rev. A 103 053501Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev 10 nwac247Google Scholar

    [16]

    Xiong H, Si L G, Zheng A S, Yang X, Wu Y 2012 Phys. Rev. A 86 013815Google Scholar

    [17]

    Xiong H, Si L G, Lü X Y, Yang X, Wu Y 2014 Ann. Phys. 349 43Google Scholar

    [18]

    Liu J H, Yu Y F, Zhang Z M 2019 Opt. Express 27 15382Google Scholar

    [19]

    罗均文, 吴德伟, 苗强, 魏天丽 2020 物理学报 69 054203Google Scholar

    Luo J W, Wu W D, Miao Q, Wei T L 2020 Acta Phys. Sin. 69 054203Google Scholar

    [20]

    Peng J X, Chen Z, Yuan Q Z, Feng X L 2019 Phys. Rev. A 99 043817Google Scholar

    [21]

    Han Y, Cheng J, Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505Google Scholar

    [22]

    Gu K H, Yan D, Wang X, Zhang M L, Yin J Z 2019 J. Phys. B: At. Mol. Opt. Phys. 52 105502Google Scholar

    [23]

    Han C M, Wang X, Chen H, Li H R 2020 Opt. Commun. 456 124605Google Scholar

    [24]

    谷开慧, 严冬, 张孟龙, 殷景志, 付长宝 2019 物理学报 68 054201Google Scholar

    Gu K H, Yan D, Zhang M L, Yin J Z, Fu C B 2019 Acta Phys. Sin. 68 054201Google Scholar

    [25]

    廖庆洪, 郑庆华, 鄢秋荣, 刘晔, 张旗 2016 中国激光 43 266

    Liao Q H, Zheng Q H, Yan Q R, Liu Y, Zhang Q 2016 Chin. J. Lasers 43 266

    [26]

    Asjad M, Saif F 2014 Optik 125 5455Google Scholar

    [27]

    Wang T, Zheng M H, Bai C H, Wang D Y, Zhu A D, Wang H F, Zhang S 2018 Ann. Phys. 530 1800228Google Scholar

    [28]

    Chen S, Jing J 2010 Class. Quantum Grav. 27 225006Google Scholar

    [29]

    Peng H B, Chang C W, Aloni S, Yuzvinsky T D, Zettl A 2006 Phys. Rev. Lett. 97 087203Google Scholar

    [30]

    Michimura Y, Komori K 2020 Eur. Phys. J. D 74 126Google Scholar

    [31]

    Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [32]

    He Y 2016 Phys. Rev. A 94 063804Google Scholar

    [33]

    Yasir K A, Liu W M 2016 Sci. Rep. 6 22651Google Scholar

    [34]

    Akram M J, Ghafoor F, Khan M M, Saif F 2017 Phys. Rev. A 95 023810Google Scholar

    [35]

    Liu L W, Gengzang D J, An X J, Wang P Y 2018 Chin. Phys. B 27 034205Google Scholar

    [36]

    Cao C, Mi S C, Gao Y P, He L Y , Yang D , Wang T J , Zhang R, Wang C 2016 Sci. Rep. 6 22920

    [37]

    Hao H, Kuzyk M C, Ren J, Zhang F, Duan X, Zhou L, Zhang T, Gong Q, Wang H, Gu Y 2019 Phys. Rev. A 100 023820Google Scholar

    [38]

    Wang M, Kong C, Sun Z Y, Zhang D, Wu Y Y, Zheng L L 2021 Phys. Rev. A 104 033708Google Scholar

    [39]

    Nagy D, Szirmai G, Domokos P 2013 Eur. Phys. J. D 67 1Google Scholar

    [40]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179Google Scholar

    [41]

    Li M, Chen C L 2014 Acta Phys. Sin. 63 043201Google Scholar

    [42]

    Su X, Huang Y M, Xiong H 2019 IEEE Access 7 133832Google Scholar

    [43]

    Xiong H, Si L G, Lü X Y, Wu Y 2016 Opt. Express 24 5773Google Scholar

    [44]

    Xiong H, Fan Y W, Yang X X, Wu Y 2016 Appl. Phys. Lett. 109 061108Google Scholar

    [45]

    Liu S, Liu B, Yang W X 2019 Opt. Express 27 3909Google Scholar

    [46]

    Wang X Y, Si L G, Lu X H, Wu Y 2019 Opt. Express 27 29297Google Scholar

    [47]

    Xiong H, Huang Y M, Wu Y 2021 Phys. Rev. A 103 043506Google Scholar

    [48]

    Lu X H, Si L G, Wang X Y, Wu Y 2021 Opt. Express 29 4875Google Scholar

    [49]

    Liao Q H, Ao J W, Song M L, Qiu H Y 2023 Opt. Express 31 27508Google Scholar

    [50]

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203 [王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬 2023 物理学报 72 094203]Google Scholar

    Wang X, Ren F F, Han S, Han H Y, Yan D 2023 Acta Phys. Sin. 72 094203Google Scholar

    [51]

    Eftekhari F, Tavassoly M K, Behjat A, Faghihi M J 2024 OPT LASER TECHNOL 168 109934Google Scholar

    [52]

    Singh S K, Peng J X, Asjad M, Mazaheri M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 215502Google Scholar

    [53]

    Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810Google Scholar

    [54]

    Zeng R P, Zhang S, Wu C W, Wu W, Chen P X 2015 J. Opt. Soc. Am. B: Opt. Phys. 32 2314Google Scholar

    [55]

    Breyer D, Bienert M 2012 Phys. Rev. A 86 053819Google Scholar

  • [1] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, doi: 10.7498/aps.72.20230663
    [2] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, doi: 10.7498/aps.71.20220691
    [3] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, doi: 10.7498/aps.68.20190347
    [4] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, doi: 10.7498/aps.68.20190205
    [5] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究. 物理学报, doi: 10.7498/aps.67.20172467
    [6] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, doi: 10.7498/aps.65.194205
    [7] 贾树芳, 梁九卿. 单模光腔中N个二能级原子系统的有限温度特性和相变. 物理学报, doi: 10.7498/aps.64.130505
    [8] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平. 腔光力学系统中的量子测量. 物理学报, doi: 10.7498/aps.64.164211
    [9] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究. 物理学报, doi: 10.7498/aps.63.026201
    [10] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, doi: 10.7498/aps.61.084214
    [11] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性. 物理学报, doi: 10.7498/aps.61.060301
    [12] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, doi: 10.7498/aps.56.1906
    [13] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, doi: 10.7498/aps.53.620
    [14] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, doi: 10.7498/aps.51.2623
    [15] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响. 物理学报, doi: 10.7498/aps.50.1279
    [16] 冯勋立, 何林生. 两能级原子在压缩真空态光场中双光子过程的细致平衡和熵的演化. 物理学报, doi: 10.7498/aps.46.1926
    [17] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应. 物理学报, doi: 10.7498/aps.46.1718
    [18] 刘正东. 四能级原子与双模腔场相互作用中的非线性效应. 物理学报, doi: 10.7498/aps.38.98
    [19] 杜功焕. 非线性有限束光声效应理论. 物理学报, doi: 10.7498/aps.37.769
    [20] 罗诗裕, 刘曾荣, 邵明珠. 半导体光磁电效应的非线性特征. 物理学报, doi: 10.7498/aps.36.547
计量
  • 文章访问数:  207
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-11
  • 修回日期:  2025-01-11
  • 上网日期:  2025-02-21

/

返回文章
返回