搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究

王文睿 于晋龙 韩丙辰 郭精忠 罗俊 王菊 刘毅 杨恩泽

引用本文:
Citation:

基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究

王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽

All-optical logic gates based on nonlinear polarization rotation in high nonlinear fiber

Wang Wen-Rui, Yu Jin-Long, Han Bing-Chen, Guo Jing-Zhong, Luo Jun, Wang Ju, Liu Yi, Yang En-Ze
PDF
导出引用
  • 提出了一种新型的基于高非线性光纤(HNLF)中非线性 偏振旋转(NPR)效应的全光逻辑门实现方案. 将两路非归零码数据信号A和B以及一路直流光同时注入HNLF, 光功率变化导致的非线性双折射在两个偏振分量上引入非线性相对相移, 从而导致光信号的偏振态旋转. 在HNLF输出端, 通过波分解复用器和偏振分束器同时滤出数据信号和直流光的正交偏振态, 从而同时实现多种基础组合逻辑, 并可以在同一段HNLF中实现较为复杂的半加器、半减器逻辑功能. 理论分析了信号光在HNLF中的偏振态演化, 以及利用HNLF中的NPR效应同时实现多种全光逻辑门的原理. 并在实验中得到了10 Gbit/s全光信号与、非、或、同或、异或、A B、AB、半加器、半减器等逻辑功能, 验证了方案的可行性.
    A novel scheme to realize all-optical logic gates is proposed based on nonlinear polarization rotation (NPR) in high nonlinear fiber (HNLF). Two optical signals A and B together with a continuous wave are injected into the HNLF. Due to the optical power variation in HNLF, nonlinear birefringence will be induced between the two polarization axes. Both the optical signal and the continuous wave are filtered out at the output of HNLF. By controlling the optical power and the polarization of the optical signal as well as the polarization of the polarizer with respect to the polarization of optical signal/continuous wave, multiple all-optical logic gates can be realized. The theoretical analysis of the optical logic gates based on NPR in HNLF is provided. And the feasibility of the scheme is demonstrated by realizing all opticaland,not,or,xor,nxor,A B,AB, half-adder and half-subtracter at 10 Gbit/s operation.
    • 基金项目: 国家自然科学基金重点项目(批准号: 60736035)、国家重点基础研究发展计划(批准号: 2010CB327603, 2012CB315704)和山西省青年科学基金(批准号: 2011021018)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60736035), the State Key Development Program for Basic Research of China (Grant Nos. 2010CB327603, 2012CB315704), and the Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2011021018).
    [1]

    Mahony O, Politi C, Klonidis D, Nejabati R, Simeonidou D 2006 J. Lightwave Technol. 24 4684.

    [2]

    Zhang X L, Dong J J, Wang Y, Huang D X 2005 Acta Phys. Sin. 54 2066 (in Chinese) [张新亮, 董建绩, 王颖, 黄德修 2005 物理学报 54 2066]

    [3]

    Bhambri K, Jayjee G K, Neena G, Divya D 2011 Proceedings of the 13th International Conference on Transparent Optical Networks (Warsaw: National Institute of Telecommunications) Tu.P.15

    [4]

    Dong J J, Zhang X L, Xu J, Huang D X 2008 Opt. Commun. 281 1710

    [5]

    Li Z H, Li G F 2006 IEEE Photon. Technol. Lett. 18 1341

    [6]

    Theophilopoulos G, Yiannopoulos K, Kalyvas M, Bintjas C, Kalogerakis G, Avramopoulos H, Occhi L, Schares L, Guekos G, Hansmann S, Dall'Ara R 2001 Proceedings of the Conference on Optical Fiber Communications (New York: Optical Society of America) MB2

    [7]

    Singh S, Lovkesh L 2011 IEEE J. Sel. Top. Quantum Electron. 47 1

    [8]

    Sa L M, Silva H, Andre P, Nogueira R 2011 Proceedings of the International Conference on Computer as a Tool (Lisbon: Instituto Superior Técnico) p1

    [9]

    Kumar S, Willner A E, Gurkan D, Parameswaran K R, Fejer M M 2006 Opt. Express 14 10255

    [10]

    Lai D M, Kwok C H, Wong K K 2008 Opt. Express 16 18362

    [11]

    Bogoni A, Poti L, Proietti R, Meloni G, Ponzini F, Ghelfi P 2005 Electron. Lett. 41 435

    [12]

    Yi L L, Hu W S, He H, Dong Y, Jin Y H, Sun W Q 2011 Chin. Opt. Lett. 9 030603

    [13]

    Phongsanam P, Polar A, Moongfangklanga N, Mitatha S, Yupapin P P 2011 Proceedings of the 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Khon Kaen: Khon Kaen University) p149

    [14]

    Han B C, Yu J L, Zhang L T, Wang W R, Jiang Y, Zhang A X, Yang E Z 2009 Acta Opt. Sin. 29 2082 (in Chinese) [韩丙辰, 于晋龙, 张立台, 王文睿, 江阳, 张爱旭, 杨恩泽 2009 光学学报 29 2082]

    [15]

    Agrawal G P 2000 Nonlinear Fiber Optics (3rd ed) (Burlington: Elsevier Science) p130

    [16]

    Fietz C, Shvets G 2007 Opt. Lett. 36 1683

  • [1]

    Mahony O, Politi C, Klonidis D, Nejabati R, Simeonidou D 2006 J. Lightwave Technol. 24 4684.

    [2]

    Zhang X L, Dong J J, Wang Y, Huang D X 2005 Acta Phys. Sin. 54 2066 (in Chinese) [张新亮, 董建绩, 王颖, 黄德修 2005 物理学报 54 2066]

    [3]

    Bhambri K, Jayjee G K, Neena G, Divya D 2011 Proceedings of the 13th International Conference on Transparent Optical Networks (Warsaw: National Institute of Telecommunications) Tu.P.15

    [4]

    Dong J J, Zhang X L, Xu J, Huang D X 2008 Opt. Commun. 281 1710

    [5]

    Li Z H, Li G F 2006 IEEE Photon. Technol. Lett. 18 1341

    [6]

    Theophilopoulos G, Yiannopoulos K, Kalyvas M, Bintjas C, Kalogerakis G, Avramopoulos H, Occhi L, Schares L, Guekos G, Hansmann S, Dall'Ara R 2001 Proceedings of the Conference on Optical Fiber Communications (New York: Optical Society of America) MB2

    [7]

    Singh S, Lovkesh L 2011 IEEE J. Sel. Top. Quantum Electron. 47 1

    [8]

    Sa L M, Silva H, Andre P, Nogueira R 2011 Proceedings of the International Conference on Computer as a Tool (Lisbon: Instituto Superior Técnico) p1

    [9]

    Kumar S, Willner A E, Gurkan D, Parameswaran K R, Fejer M M 2006 Opt. Express 14 10255

    [10]

    Lai D M, Kwok C H, Wong K K 2008 Opt. Express 16 18362

    [11]

    Bogoni A, Poti L, Proietti R, Meloni G, Ponzini F, Ghelfi P 2005 Electron. Lett. 41 435

    [12]

    Yi L L, Hu W S, He H, Dong Y, Jin Y H, Sun W Q 2011 Chin. Opt. Lett. 9 030603

    [13]

    Phongsanam P, Polar A, Moongfangklanga N, Mitatha S, Yupapin P P 2011 Proceedings of the 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Khon Kaen: Khon Kaen University) p149

    [14]

    Han B C, Yu J L, Zhang L T, Wang W R, Jiang Y, Zhang A X, Yang E Z 2009 Acta Opt. Sin. 29 2082 (in Chinese) [韩丙辰, 于晋龙, 张立台, 王文睿, 江阳, 张爱旭, 杨恩泽 2009 光学学报 29 2082]

    [15]

    Agrawal G P 2000 Nonlinear Fiber Optics (3rd ed) (Burlington: Elsevier Science) p130

    [16]

    Fietz C, Shvets G 2007 Opt. Lett. 36 1683

  • [1] 张建伟, 张星, 周寅利, 李惠, 王岩冰, 陈志明, 徐嘉琪, 宁永强, 王立军. 1550 nm毫瓦级单横模垂直腔面发射半导体激光器. 物理学报, 2022, 71(6): 064204. doi: 10.7498/aps.71.20212132
    [2] 张永棠. 一种广义三模腔光机械系统的相干完美吸收与透射. 物理学报, 2017, 66(10): 107101. doi: 10.7498/aps.66.107101
    [3] 黄标, 于晋龙, 王文睿, 王菊, 薛纪强, 于洋, 贾石, 杨恩泽. 基于注入锁定法布里-珀罗激光器的光学双稳态及光存储研究. 物理学报, 2015, 64(4): 044204. doi: 10.7498/aps.64.044204
    [4] 江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才. 基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究. 物理学报, 2015, 64(15): 154213. doi: 10.7498/aps.64.154213
    [5] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [6] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 双向使用高非线性光纤实现同时解复用出两路10 Gbit/s信号. 物理学报, 2014, 63(2): 024201. doi: 10.7498/aps.63.024201
    [7] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [8] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究. 物理学报, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [9] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [10] 刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军. 基于新型偏振稳定毫米波发生器的光载无线通信下行链路. 物理学报, 2012, 61(9): 094205. doi: 10.7498/aps.61.094205
    [11] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [12] 王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽. 基于光参量放大的高速实时光取样技术. 物理学报, 2011, 60(10): 104220. doi: 10.7498/aps.60.104220
    [13] 于晋龙, 罗俊, 韩丙辰, 郭精忠, 吴波, 王菊, 张晓媛, 杨恩泽. 基于光纤光参量放大的异步双波长全光再生技术研究. 物理学报, 2010, 59(9): 6138-6144. doi: 10.7498/aps.59.6138
    [14] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [15] 席丽霞, 唐先锋, 王少康, 张晓光. 基于光子晶体光纤的相位再生器的设计及优化. 物理学报, 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [16] 苗向蕊, 高士明, 高 莹. 基于光纤四波混频效应的新型组播方法. 物理学报, 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [17] 董建绩, 张新亮, 王 阳, 黄德修. 基于单个半导体光放大器的高速多功能逻辑门. 物理学报, 2008, 57(4): 2222-2228. doi: 10.7498/aps.57.2222
    [18] 李燕明, 陈理想, 佘卫龙. 光致异构全光逻辑门理论与实验研究. 物理学报, 2007, 56(10): 5895-5902. doi: 10.7498/aps.56.5895
    [19] 李培丽, 黄德修, 张新亮, 朱光喜. 基于半导体光纤环形腔激光器的新型全光AND门和NOR门. 物理学报, 2007, 56(2): 871-877. doi: 10.7498/aps.56.871
    [20] 郑远, 于丽, 杨伯君, 张晓光. 能够补偿二阶偏振模色散的三阶段偏振模色散补偿器. 物理学报, 2002, 51(12): 2745-2749. doi: 10.7498/aps.51.2745
计量
  • 文章访问数:  5042
  • PDF下载量:  1305
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-18
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究

  • 1. 天津大学电子信息工程学院, 天津 300072;
  • 2. 山西大同大学物理与电子科学学院, 大同 037009
    基金项目: 国家自然科学基金重点项目(批准号: 60736035)、国家重点基础研究发展计划(批准号: 2010CB327603, 2012CB315704)和山西省青年科学基金(批准号: 2011021018)资助的课题.

摘要: 提出了一种新型的基于高非线性光纤(HNLF)中非线性 偏振旋转(NPR)效应的全光逻辑门实现方案. 将两路非归零码数据信号A和B以及一路直流光同时注入HNLF, 光功率变化导致的非线性双折射在两个偏振分量上引入非线性相对相移, 从而导致光信号的偏振态旋转. 在HNLF输出端, 通过波分解复用器和偏振分束器同时滤出数据信号和直流光的正交偏振态, 从而同时实现多种基础组合逻辑, 并可以在同一段HNLF中实现较为复杂的半加器、半减器逻辑功能. 理论分析了信号光在HNLF中的偏振态演化, 以及利用HNLF中的NPR效应同时实现多种全光逻辑门的原理. 并在实验中得到了10 Gbit/s全光信号与、非、或、同或、异或、A B、AB、半加器、半减器等逻辑功能, 验证了方案的可行性.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回