-
拓扑光子学的提出与发展为从根本物理原理上解决传统光学器件易受干扰的问题提供了新思路, 基于拓扑保护的新型鲁棒光场调控极大地提高了光学器件的传输效率和稳健性. 其中, 基于时间反演对称性破缺的非互易拓扑光子学及其手性拓扑态是拓扑光子学的重要分支, 其拓扑特性由非零陈数或陈矢量表征, 表现出超越互易拓扑光子学的严格拓扑保护鲁棒性. 本综述将重点介绍非互易拓扑光子学在探索新奇物理现象(手性/反手性边界态、反常非互易拓扑边界态、三维光学陈绝缘体、磁性外尔光子晶体等)和构建非互易鲁棒拓扑光学器件(单向光波导、宽带慢光延迟线、任意形状拓扑激光器、大轨道角动量相干光源等)等方面取得的显著成果. 最后对非互易拓扑光子学的发展现状、潜在挑战以及可能取得的突破进行了展望.The proposal and development of topological photonics have provided a new approach to fundamentally addressing the susceptibility of traditional photonic devices to defects or disorders, significantly enhancing the transmission efficiency and robustness of photonic devices. Among them, non-reciprocal topological photonics which break time-reversal symmetry and support chiral topological states are crucial branches of topological photonics. Their topological properties are characterized by non-zero Chern numbers in two dimensions or topological Chern vectors in three dimensions, exhibiting a rigorous and complete topological protection beyond that of reciprocal topological photonics. This review focuses on introducing the remarkable achievements of non-reciprocal topological photonics in exploring novel physical phenomena (chiral/antichiral edge/surface states, two-dimensional/three-dimensional photonic Chern insulators, magnetic Weyl photonics crystals, etc.) and constructing non-reciprocal robust topological photonic devices (unidirectional waveguides, broadband slow-light delay lines, arbitrarily shaped topological lasers, high-orbital-angular-momentum coherent light sources, etc.). Finally, the present status, potential challenges, and possible breakthroughs in the development of non-reciprocal topological photonics are discussed.
-
Keywords:
- topological photonics /
- nonreciprocal topological photonics /
- photonic Chern insulator /
- nonreciprocal topological devices
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[2] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[3] Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light-Second Edition (Princeton University Press) pp38–177
[4] Liu L, Li Z 2022 PIER 173 93Google Scholar
[5] Yao D Y, He P H, Zhang H C, Zhang C, Zhu J W, Hu M, Cui T J 2022 PIER 175 105Google Scholar
[6] Chen H S, Gao F, Lin X, Tan S R, Wang C 2023 PIER 177 85Google Scholar
[7] Durach M, Williamson F, Adams J, Holtz T, Bhatt P, Moreno R, Smith F 2022 PIER 173 53Google Scholar
[8] Ding F 2022 PIER 174 55Google Scholar
[9] Zhou E Y, Cheng Y Z, Chen F, Luo H, Li X C 2022 PIER 175 91Google Scholar
[10] Chen H S, Huangfu J T, Qian C, Zhang J, Wang Z D, Zhu X Y, Chen J T, Lin P J 2023 PIER 178 83Google Scholar
[11] Tan Q Z, Qian C, Chen H S 2023 PIER 176 55Google Scholar
[12] Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar
[13] Rider M S, Palmer S J, Pocock S R, Xiao X, Huidobro P A, Giannini V 2019 J. Appl. Phys. 125 120901Google Scholar
[14] Smirnova D, Leykam D, Chong Y, Kivshar Y 2020 Appl. Phys. Rev. 7 021306Google Scholar
[15] Yuan L Q, Lin Q, Xiao M, Fan S 2018 Optica 5 1396Google Scholar
[16] 陈剑锋, 梁文耀, 李志远 2021 光学学报 41 0823015Google Scholar
Chen J F, Liang Y W, Li Z Y 2021 Acta Opt. Sin. 41 0823015Google Scholar
[17] Wu Y, Li C, Hu X Y, Ao Y, Zhao Y F, Gong Q H 2017 Adv. Optical Mater. 5 1700357Google Scholar
[18] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar
[19] Wang H F, Gupta S K, Xie B Y, Lu M H 2020 Front. Optoelectron. 13 50Google Scholar
[20] Lin Z K, Wang Q, Liu Y, Xue H, Zhang B, Chong Y, Jiang J H 2023 Nat. Rev. Phys. 5 483Google Scholar
[21] Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar
[22] Xie B Y, Wang H X, Zhang X J, Zhan P, Jiang J H, Lu M H, Chen Y F 2021 Nat. Rev. Phys. 3 520.Google Scholar
[23] Xue H R, Yang Y H, Zhang B L 2021 Adv. Photonics Res. 2 2100013Google Scholar
[24] You J W, Lan Z H, Ma Q, Gao Z, Yang Y H, Gao F, Meng X, Cui T J 2023 Photonics. Res. 11 B65Google Scholar
[25] Cao J H, Kavokin A V, Nalitov A V 2022 PIER 173 141Google Scholar
[26] Li Y Z, Zhang Z J, Chen H S, Gao F 2023 PIER 178 37Google Scholar
[27] Zheng J J, Guo Z W, Sun Y, Jiang H T, Li Y H, Chen H 2023 PIER 177 1Google Scholar
[28] Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar
[29] Cheng X J, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar
[30] Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar
[31] Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar
[32] Nalitov A V, Malpuech G, Terças H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar
[33] Dong J W, Chen X D, Zhu H, Wang Y, Zhang X 2017 Nat. Mater. 16 298Google Scholar
[34] Xi X, Ye K P, Wu R X 2020 Photonics Res. 8 B1Google Scholar
[35] Ma T, Shvets G 2016 New J. Phys. 18 025012Google Scholar
[36] Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar
[37] Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar
[38] Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar
[39] Ao X, Lin Z, Chan C T 2009 Phys. Rev. B 80 033105Google Scholar
[40] Poo Y, Wu R X, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903Google Scholar
[41] Skirlo S A, Lu L, Soljačić M 2014 Phys. Rev. Lett. 113 113904Google Scholar
[42] Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljačić M 2015 Phys. Rev. Lett. 115 253901Google Scholar
[43] Lu L, Fu L, Joannopoulos J D, Soljačić M 2013 Nat. Photonics 7 294Google Scholar
[44] Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar
[45] Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar
[46] Kim S, Christensen T, Johnson S G, Soljačić M 2023 ACS Photonics 10 861Google Scholar
[47] Devescovi C, García-Díez M, Robredo I, Blanco de Paz M, Lasa-Alonso J, Bradlyn B, Mañes J L, G. Vergniory M, García-Etxarri A 2021 Nat. Commun. 12 7330Google Scholar
[48] Devescovi C, Morales-Pérez A, Hwang Y, García-Díez M, Robredo I, Mañes J L, Bradlyn B, García-Etxarri A, Vergniory M G 2023 arXiv: 2305.19805 [physics.optics]
[49] Gao W, Yang B, Lawrence M, Fang F, Béri B, Zhang S 2016 Nat. Commun. 7 12435Google Scholar
[50] Wang D Y, Yang B, Gao W L, Jia H W, Yang Q L, Chen X Y, Wei M G, Liu C X, Navarro-Cía M, Han J G, Zhang W L, Zhang S 2019 Nat. Phys. 15 1150Google Scholar
[51] Liu G G, Gao Z, Wang Q, Xi X, Hu Y H, Wang M R, Liu C Q, Lin X, Deng L J, Yang S Y A, Zhou P H, Yang Y H, Chong Y D, Zhang B L 2022 Nature 609 925Google Scholar
[52] Xi X, Yan B, Yang L Y, Meng Y, Zhu Z X, Chen J M, Wang Z Y, Zhou P H, Shum P, Yang Y H, Chen H S, Mandal S, Liu G G, Zhang B L, Gao Z 2023 Nat. Commun. 14 1991Google Scholar
[53] Owens J C, Panetta M G, Saxberg B, Roberts G, Chakram S, Ma R, Vrajitoarea A, Simon J, Schuster D I 2022 Nat. Phys. 18 1048Google Scholar
[54] Vanderbilt D 2018 Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press) pp75–87
[55] Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674Google Scholar
[56] Pozar D M 2005 Microwave Engineering, Fourth Edition (John Wiley & Sons) pp452–462
[57] Bahari B, Ndao A, Vallini F, El Amili A, Fainman Y, Kanté B 2017 Science 358 636Google Scholar
[58] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 eaar4005Google Scholar
[59] Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M 2018 Science 359 eaar4003Google Scholar
[60] Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L, Davies A G, Linfield E H, Zhang B L, Chong Y D, Wang Q J 2020 Nature 578 246Google Scholar
[61] Shao Z K, Chen H Z, Wang S, Mao X R, Yang Z Q, Wang S L, Wang X X, Hu X, Ma R M 2020 Nat. Nanotechnol. 15 67Google Scholar
[62] Fu J X, Lian J, Liu R J, Gan L, Li Z Y 2011 Appl. Phys. Lett. 98 211104Google Scholar
[63] He C, Chen X L, Lu M H, Li X F, Wan W W, Qian X S, Yin R C, Chen Y F 2010 Appl. Phys. Lett. 96 111111Google Scholar
[64] Liu S Y, Lu W L, Lin Z F, Chui S T 2010 Appl. Phys. Lett. 97 201113Google Scholar
[65] Wang Z Y, Yu Z H, Zheng X D, Wang L 2012 J. Electromagn. Waves Appl. 26 1476Google Scholar
[66] Chen J, Liang W, Li Z Y 2020 Phys. Rev. B 101 214102Google Scholar
[67] Zhou P H, Liu G G, Yang Y H, Hu Y H, Ma S L, Xue H R, Wang Q, Deng L J, Zhang B L 2020 Phys. Rev. Lett. 125 263603Google Scholar
[68] Wang M, Zhang R Y, Zhang L, Wang D, Guo Q, Zhang Z Q, Chan C T 2021 Phys. Rev. Lett. 126 067401Google Scholar
[69] Chen J, Li Z Y 2022 Phys. Rev. Lett. 128 257401Google Scholar
[70] Zhang Z, Delplace P, Fleury R 2021 Nature 598 293Google Scholar
[71] Fleury R, Chen Q, Zhang Z, Qin H, Bossart A, Yang Y, Chen H 2023 Research Square https://doi.org/10.21203/rs.3.rs-3286219/v1
[72] Ochiai T, Onoda M 2009 Phys. Rev. B 80 155103Google Scholar
[73] Ochiai T 2012 Phys. Rev. B 86 075152Google Scholar
[74] Lu J C, Chen X D, Deng W M, Chen M, Dong J W 2018 J. Opt. 20 075103Google Scholar
[75] Ni X, Purtseladze D, Smirnova D A, Slobozhanyuk A, Alù A, Khanikaev A B 2018 Sci. Adv. 4 eaap8802Google Scholar
[76] Liu G G, Zhou P H, Yang Y H, Xue H R, Ren X, Lin X, Sun H X, Bi L, Chong Y D, Zhang B L 2020 Nat. Commun. 11 1873Google Scholar
[77] Wang Y N, Wang H X, Liang L, Zhu W W, Fan L Z, Lin Z K, Li F F, Zhang X, Luan P G, Poo Y, Jiang J H, Guo G Y 2023 Nat. Commun. 14 4457Google Scholar
[78] Liu C X, Gao W L, Yang B, Zhang S 2017 Phys. Rev. Lett. 119 183901Google Scholar
[79] Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806Google Scholar
[80] Liu G G, Yang Y H, Ren X, Xue H R, Lin X, Hu Y H, Sun H X, Peng B, Zhou P H, Chong Y D, Zhang B L 2020 Phys. Rev. Lett. 125 133603Google Scholar
[81] Mansha S, Chong Y D 2017 Phys. Rev. B 96 121405Google Scholar
[82] Yang B, Zhang H F, Wu T, Dong R X, Yan X L, Zhang X D 2019 Phys. Rev. B 99 045307Google Scholar
[83] Zhou P H, Liu G G, Ren X, Yang Y H, Xue H R, Bi L, Deng L J, Chong Y D, Zhang B L 2020 Light Sci. Appl. 9 133Google Scholar
[84] Zhang Z, Delplace P, Fleury R 2023 Sci. Adv. 9 eadg3186Google Scholar
[85] Li F F, Wang H X, Xiong Z, Lou Q, Chen P, Wu R X, Poo Y, Jiang J H, John S 2018 Nat. Commun. 9 2462Google Scholar
[86] He L, Addison Z, Mele E J, Zhen B 2020 Nat. Commun. 11 3119Google Scholar
[87] Zhou P H, Liu G G, Wang Z H, Hu Y H, Li S W, Xie Q D, Xi X, Gao Z, Deng L J, Zhang B L 2023 arXiv: 2302.03184 [physics.optics]
[88] Liu G G, Mandal S, Zhou P H, Xi X, Banerjee R, Hu Y H, Wei M G, Wang M R, Wang Q, Gao Z, Chen H S, Yang Y H, Chong Y D, Zhang B L 2023 Phys. Rev. Lett. 132 113802Google Scholar
[89] Yu Z F, Veronis G, Wang Z, Fan S H 2008 Phys. Rev. Lett. 100 023902Google Scholar
[90] Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895Google Scholar
[91] Liu K X, Shen L F, He S L 2012 Opt. Lett. 37 4110Google Scholar
[92] Tong W W, Wang J F, Wang J, Liu Z T, Pang Y Q, Qu S B 2016 Appl. Phys. Lett. 109 053502Google Scholar
[93] Silveirinha M G 2015 Phys. Rev. B 92 125153Google Scholar
[94] Silveirinha M G 2016 Phys. Rev. B 94 205105Google Scholar
[95] Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G, Zhang B L 2018 Nat. Phys. 14 140Google Scholar
[96] Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljačić M, Fu L, Fang N X 2016 Nat. Commun. 7 13486Google Scholar
[97] Jin D, Xia Y, Christensen T, Freeman M, Wang S, Fong K Y, Gardner G C, Fallahi S, Hu Q, Wang Y, Engel L, Xiao Z L, Manfra M J, Fang N X, Zhang X 2019 Nat. Commun. 10 4565Google Scholar
[98] Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002Google Scholar
[99] Baba T 2008 Nat. Photonics 2 465Google Scholar
[100] Hafezi M 2011 Nat. Phys 7 907Google Scholar
[101] Guglielmon J, Rechtsman M C 2019 Phys. Rev. Lett. 122 153904Google Scholar
[102] Yu L T, Xue H R, Zhang B L 2021 Appl. Phys. Lett. 118 071102Google Scholar
[103] Mann S A, Alù A 2021 Phys. Rev. Lett. 127 123601Google Scholar
[104] Chen F J, Xue H R, Pan Y, Wang M R, Hu Y H, Zhang L, Chen Q L, Han S, Liu G G, Gao Z, Zhou P H, Chen H S, Zhang B L, Yang Y H 2023 arXiv: 2208.07228 [physics.app-ph]
[105] He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 872Google Scholar
[106] Porras M A 2023 PIER 177 95Google Scholar
[107] Bahari B, Hsu L, Pan S H, Preece D, Ndao A, El Amili A, Fainman Y, Kanté B 2021 Nat. Phys. 17 700Google Scholar
-
图 1 (a) 具有狄拉克点的能带结构图[36]; (b) 二维光学陈绝缘体实验装置图及手性边界态的单向与鲁棒传输模场分布图[38]; (c)二维蜂窝晶格磁性光子晶体实验样品图及其自约束的手性边界态模场分布图[40]; (d) 不同陈数手性边界态色散曲线[42]; (e) 反手性边界态的模场分布[67]; (f) 拓扑单向大面积波导模场分布[68]; (g) 拓扑单向体态的模场分布[69]; (h) 反常Floquet拓扑绝缘体和陈绝缘体相变图[70]; (i) 常负曲率双曲晶格反常Floquet拓扑绝缘体和陈绝缘体实验样品图[71]
Fig. 1. (a) Band diagram with Dirac point[36]; (b) diagram of the experimental setup of two-dimensional optical Chern insulator and the distribution of one-way and robust mode fields of chiral edge states[38]; (c) two-dimensional honeycomb lattice magnetic photonic crystal experimental sample map and its self-constrained chiral edge state mode field distribution[40]; (d) the dispersion of chiral edge states with different Chen numbers[42]; (e) field distribution of the Antichiral edge states[67]; (f) field distribution of topological unidirectional large area waveguide[68]; (g) field distribution of topological chiral bulk states[69]; (h) phase transition diagrams of anomalous Floquet topological and Chen insulators[70]; (i) diagram of experimental samples of hyperbolic lattice anomalous Floquet topological with constant negative curvature and Chen insulators[71].
图 2 (a) 非成对狄拉克点的实验样品及其能带结构[76]; (b) 具有混合边界态的磁性光子晶体结构示意图及其混合边界态色散示意图[77]; (c) 光学拓扑安德森绝缘体手性边界态[80]; (d) 非晶陈绝缘体手性边界态[83]; (e)无序度增大时反常弗洛凯拓扑绝缘体和陈绝缘体相变图[84]; (f) 二维磁性光子晶体中由位错导致的束缚态传输谱及模场分布[85]; (g) 高阶磁性光子晶体角态模场分布[87]; (h) 拓扑磁等离子体实验样品图和扭结磁等离子体的非互易传输谱[97]
Fig. 2. (a) Experimental setup and band structure of unpaired Dirac points[76]; (b) schematic diagram of magnetic photonic crystal with hybrid edge states and its dispersion relationship[77]; (c) chiral edge states of optical topological Anderson insulator[80]; (d) chiral edge states of amorphous Chern insulators[83]; (e) phase transition diagrams of anomalous Floquet topological insulators and Chern insulators with increasing disorder[84]; (f) transmission spectra and field distribution of bound states caused by dislocation in two-dimensional magnetic photonic crystals[85]; (g) field distribution of higher-order magnetic photonic crystals[87]; (h) experimental sample diagram of topological magnetic plasma and non-reciprocal transmission spectrum of kinked magnetic plasma[97].
图 3 (a)单对外尔点的体能带[43]; (b)奇数狄拉克锥表面态[44]; (c)三维陈绝缘体的体能带图[45]; (d)三维陈绝缘体的自动搜索和优化[46]; (e)具有任意陈矢量的磁性光子晶体及其手性表面态的场分布[47]; (f)轴子绝缘体[48]; (g)锑化铟结构的示意图和实验测量的两对外尔点的体能带图[50]; (h)三维陈绝缘体的实验样品图和实验测量的相图[51]; (i)磁性外尔光子晶体的实验样品图和实验测量的体能带[52]
Fig. 3. (a) A single pair of Weyl points[43]; (b) the odd number of surface Dirac cones[44]; (c) the bulk band structures of three-dimensional Chern insulators[45]; (d) automated discovery and optimization of 3D Chern insulator[46]; (e) 3D Chern insulator with orientable large Chern vectors and its field distribution of chiral surface state[47]; (f) the axion topological insulator[48]; (g) a schematic of the sample with a metal grating on top of the InSb substrate and the measured projected bulk band structures with two pairs of Weyl points[50]; (h) the fabricated three-dimensional Chern insulator and the measured topological phase transitions[51]; (i) the fabricated three dimensional Weyl photonic crystal and the measured projected bulk band structures[52].
图 4 (a) 手性边界态的多重布里渊区缠绕产生宽带拓扑慢光[104]; (b) 拓扑频率路由[77]; (c) 三维光学陈绝缘体手性表面态的单向鲁棒传输[51]; (d) 基于第二陈数的拓扑单向光纤[45]; (e) 形状任意非互易拓扑激光器[57]; (f) 基于二维非互易拓扑光子晶体的拓扑涡旋激光器[107]; (g) 手性腔量子电动力学[53]
Fig. 4. (a) Multiple Brillouin zone winding of chiral edge states enabled broadband topological slow light[104]; (b) topological frequency routing[77]; (c) robust transmission of chiral surface states[51]; (d) topological one-way fiber of second Chern number[45]; (e) nonreciprocal topological laser with arbitrary geometry[57]; (f) nonreciprocal topological laser with large OAM[107]; (g) chiral cavity quantum electrodynamics[53].
-
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[2] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[3] Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals: Molding the Flow of Light-Second Edition (Princeton University Press) pp38–177
[4] Liu L, Li Z 2022 PIER 173 93Google Scholar
[5] Yao D Y, He P H, Zhang H C, Zhang C, Zhu J W, Hu M, Cui T J 2022 PIER 175 105Google Scholar
[6] Chen H S, Gao F, Lin X, Tan S R, Wang C 2023 PIER 177 85Google Scholar
[7] Durach M, Williamson F, Adams J, Holtz T, Bhatt P, Moreno R, Smith F 2022 PIER 173 53Google Scholar
[8] Ding F 2022 PIER 174 55Google Scholar
[9] Zhou E Y, Cheng Y Z, Chen F, Luo H, Li X C 2022 PIER 175 91Google Scholar
[10] Chen H S, Huangfu J T, Qian C, Zhang J, Wang Z D, Zhu X Y, Chen J T, Lin P J 2023 PIER 178 83Google Scholar
[11] Tan Q Z, Qian C, Chen H S 2023 PIER 176 55Google Scholar
[12] Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar
[13] Rider M S, Palmer S J, Pocock S R, Xiao X, Huidobro P A, Giannini V 2019 J. Appl. Phys. 125 120901Google Scholar
[14] Smirnova D, Leykam D, Chong Y, Kivshar Y 2020 Appl. Phys. Rev. 7 021306Google Scholar
[15] Yuan L Q, Lin Q, Xiao M, Fan S 2018 Optica 5 1396Google Scholar
[16] 陈剑锋, 梁文耀, 李志远 2021 光学学报 41 0823015Google Scholar
Chen J F, Liang Y W, Li Z Y 2021 Acta Opt. Sin. 41 0823015Google Scholar
[17] Wu Y, Li C, Hu X Y, Ao Y, Zhao Y F, Gong Q H 2017 Adv. Optical Mater. 5 1700357Google Scholar
[18] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar
[19] Wang H F, Gupta S K, Xie B Y, Lu M H 2020 Front. Optoelectron. 13 50Google Scholar
[20] Lin Z K, Wang Q, Liu Y, Xue H, Zhang B, Chong Y, Jiang J H 2023 Nat. Rev. Phys. 5 483Google Scholar
[21] Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar
[22] Xie B Y, Wang H X, Zhang X J, Zhan P, Jiang J H, Lu M H, Chen Y F 2021 Nat. Rev. Phys. 3 520.Google Scholar
[23] Xue H R, Yang Y H, Zhang B L 2021 Adv. Photonics Res. 2 2100013Google Scholar
[24] You J W, Lan Z H, Ma Q, Gao Z, Yang Y H, Gao F, Meng X, Cui T J 2023 Photonics. Res. 11 B65Google Scholar
[25] Cao J H, Kavokin A V, Nalitov A V 2022 PIER 173 141Google Scholar
[26] Li Y Z, Zhang Z J, Chen H S, Gao F 2023 PIER 178 37Google Scholar
[27] Zheng J J, Guo Z W, Sun Y, Jiang H T, Li Y H, Chen H 2023 PIER 177 1Google Scholar
[28] Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar
[29] Cheng X J, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar
[30] Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar
[31] Yang Y T, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar
[32] Nalitov A V, Malpuech G, Terças H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar
[33] Dong J W, Chen X D, Zhu H, Wang Y, Zhang X 2017 Nat. Mater. 16 298Google Scholar
[34] Xi X, Ye K P, Wu R X 2020 Photonics Res. 8 B1Google Scholar
[35] Ma T, Shvets G 2016 New J. Phys. 18 025012Google Scholar
[36] Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar
[37] Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905Google Scholar
[38] Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar
[39] Ao X, Lin Z, Chan C T 2009 Phys. Rev. B 80 033105Google Scholar
[40] Poo Y, Wu R X, Lin Z, Yang Y, Chan C T 2011 Phys. Rev. Lett. 106 093903Google Scholar
[41] Skirlo S A, Lu L, Soljačić M 2014 Phys. Rev. Lett. 113 113904Google Scholar
[42] Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljačić M 2015 Phys. Rev. Lett. 115 253901Google Scholar
[43] Lu L, Fu L, Joannopoulos J D, Soljačić M 2013 Nat. Photonics 7 294Google Scholar
[44] Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar
[45] Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar
[46] Kim S, Christensen T, Johnson S G, Soljačić M 2023 ACS Photonics 10 861Google Scholar
[47] Devescovi C, García-Díez M, Robredo I, Blanco de Paz M, Lasa-Alonso J, Bradlyn B, Mañes J L, G. Vergniory M, García-Etxarri A 2021 Nat. Commun. 12 7330Google Scholar
[48] Devescovi C, Morales-Pérez A, Hwang Y, García-Díez M, Robredo I, Mañes J L, Bradlyn B, García-Etxarri A, Vergniory M G 2023 arXiv: 2305.19805 [physics.optics]
[49] Gao W, Yang B, Lawrence M, Fang F, Béri B, Zhang S 2016 Nat. Commun. 7 12435Google Scholar
[50] Wang D Y, Yang B, Gao W L, Jia H W, Yang Q L, Chen X Y, Wei M G, Liu C X, Navarro-Cía M, Han J G, Zhang W L, Zhang S 2019 Nat. Phys. 15 1150Google Scholar
[51] Liu G G, Gao Z, Wang Q, Xi X, Hu Y H, Wang M R, Liu C Q, Lin X, Deng L J, Yang S Y A, Zhou P H, Yang Y H, Chong Y D, Zhang B L 2022 Nature 609 925Google Scholar
[52] Xi X, Yan B, Yang L Y, Meng Y, Zhu Z X, Chen J M, Wang Z Y, Zhou P H, Shum P, Yang Y H, Chen H S, Mandal S, Liu G G, Zhang B L, Gao Z 2023 Nat. Commun. 14 1991Google Scholar
[53] Owens J C, Panetta M G, Saxberg B, Roberts G, Chakram S, Ma R, Vrajitoarea A, Simon J, Schuster D I 2022 Nat. Phys. 18 1048Google Scholar
[54] Vanderbilt D 2018 Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press) pp75–87
[55] Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674Google Scholar
[56] Pozar D M 2005 Microwave Engineering, Fourth Edition (John Wiley & Sons) pp452–462
[57] Bahari B, Ndao A, Vallini F, El Amili A, Fainman Y, Kanté B 2017 Science 358 636Google Scholar
[58] Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 eaar4005Google Scholar
[59] Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M 2018 Science 359 eaar4003Google Scholar
[60] Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L, Davies A G, Linfield E H, Zhang B L, Chong Y D, Wang Q J 2020 Nature 578 246Google Scholar
[61] Shao Z K, Chen H Z, Wang S, Mao X R, Yang Z Q, Wang S L, Wang X X, Hu X, Ma R M 2020 Nat. Nanotechnol. 15 67Google Scholar
[62] Fu J X, Lian J, Liu R J, Gan L, Li Z Y 2011 Appl. Phys. Lett. 98 211104Google Scholar
[63] He C, Chen X L, Lu M H, Li X F, Wan W W, Qian X S, Yin R C, Chen Y F 2010 Appl. Phys. Lett. 96 111111Google Scholar
[64] Liu S Y, Lu W L, Lin Z F, Chui S T 2010 Appl. Phys. Lett. 97 201113Google Scholar
[65] Wang Z Y, Yu Z H, Zheng X D, Wang L 2012 J. Electromagn. Waves Appl. 26 1476Google Scholar
[66] Chen J, Liang W, Li Z Y 2020 Phys. Rev. B 101 214102Google Scholar
[67] Zhou P H, Liu G G, Yang Y H, Hu Y H, Ma S L, Xue H R, Wang Q, Deng L J, Zhang B L 2020 Phys. Rev. Lett. 125 263603Google Scholar
[68] Wang M, Zhang R Y, Zhang L, Wang D, Guo Q, Zhang Z Q, Chan C T 2021 Phys. Rev. Lett. 126 067401Google Scholar
[69] Chen J, Li Z Y 2022 Phys. Rev. Lett. 128 257401Google Scholar
[70] Zhang Z, Delplace P, Fleury R 2021 Nature 598 293Google Scholar
[71] Fleury R, Chen Q, Zhang Z, Qin H, Bossart A, Yang Y, Chen H 2023 Research Square https://doi.org/10.21203/rs.3.rs-3286219/v1
[72] Ochiai T, Onoda M 2009 Phys. Rev. B 80 155103Google Scholar
[73] Ochiai T 2012 Phys. Rev. B 86 075152Google Scholar
[74] Lu J C, Chen X D, Deng W M, Chen M, Dong J W 2018 J. Opt. 20 075103Google Scholar
[75] Ni X, Purtseladze D, Smirnova D A, Slobozhanyuk A, Alù A, Khanikaev A B 2018 Sci. Adv. 4 eaap8802Google Scholar
[76] Liu G G, Zhou P H, Yang Y H, Xue H R, Ren X, Lin X, Sun H X, Bi L, Chong Y D, Zhang B L 2020 Nat. Commun. 11 1873Google Scholar
[77] Wang Y N, Wang H X, Liang L, Zhu W W, Fan L Z, Lin Z K, Li F F, Zhang X, Luan P G, Poo Y, Jiang J H, Guo G Y 2023 Nat. Commun. 14 4457Google Scholar
[78] Liu C X, Gao W L, Yang B, Zhang S 2017 Phys. Rev. Lett. 119 183901Google Scholar
[79] Li J, Chu R L, Jain J K, Shen S Q 2009 Phys. Rev. Lett. 102 136806Google Scholar
[80] Liu G G, Yang Y H, Ren X, Xue H R, Lin X, Hu Y H, Sun H X, Peng B, Zhou P H, Chong Y D, Zhang B L 2020 Phys. Rev. Lett. 125 133603Google Scholar
[81] Mansha S, Chong Y D 2017 Phys. Rev. B 96 121405Google Scholar
[82] Yang B, Zhang H F, Wu T, Dong R X, Yan X L, Zhang X D 2019 Phys. Rev. B 99 045307Google Scholar
[83] Zhou P H, Liu G G, Ren X, Yang Y H, Xue H R, Bi L, Deng L J, Chong Y D, Zhang B L 2020 Light Sci. Appl. 9 133Google Scholar
[84] Zhang Z, Delplace P, Fleury R 2023 Sci. Adv. 9 eadg3186Google Scholar
[85] Li F F, Wang H X, Xiong Z, Lou Q, Chen P, Wu R X, Poo Y, Jiang J H, John S 2018 Nat. Commun. 9 2462Google Scholar
[86] He L, Addison Z, Mele E J, Zhen B 2020 Nat. Commun. 11 3119Google Scholar
[87] Zhou P H, Liu G G, Wang Z H, Hu Y H, Li S W, Xie Q D, Xi X, Gao Z, Deng L J, Zhang B L 2023 arXiv: 2302.03184 [physics.optics]
[88] Liu G G, Mandal S, Zhou P H, Xi X, Banerjee R, Hu Y H, Wei M G, Wang M R, Wang Q, Gao Z, Chen H S, Yang Y H, Chong Y D, Zhang B L 2023 Phys. Rev. Lett. 132 113802Google Scholar
[89] Yu Z F, Veronis G, Wang Z, Fan S H 2008 Phys. Rev. Lett. 100 023902Google Scholar
[90] Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895Google Scholar
[91] Liu K X, Shen L F, He S L 2012 Opt. Lett. 37 4110Google Scholar
[92] Tong W W, Wang J F, Wang J, Liu Z T, Pang Y Q, Qu S B 2016 Appl. Phys. Lett. 109 053502Google Scholar
[93] Silveirinha M G 2015 Phys. Rev. B 92 125153Google Scholar
[94] Silveirinha M G 2016 Phys. Rev. B 94 205105Google Scholar
[95] Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G, Zhang B L 2018 Nat. Phys. 14 140Google Scholar
[96] Jin D, Lu L, Wang Z, Fang C, Joannopoulos J D, Soljačić M, Fu L, Fang N X 2016 Nat. Commun. 7 13486Google Scholar
[97] Jin D, Xia Y, Christensen T, Freeman M, Wang S, Fong K Y, Gardner G C, Fallahi S, Hu Q, Wang Y, Engel L, Xiao Z L, Manfra M J, Fang N X, Zhang X 2019 Nat. Commun. 10 4565Google Scholar
[98] Lv B Q, Qian T, Ding H 2021 Rev. Mod. Phys. 93 025002Google Scholar
[99] Baba T 2008 Nat. Photonics 2 465Google Scholar
[100] Hafezi M 2011 Nat. Phys 7 907Google Scholar
[101] Guglielmon J, Rechtsman M C 2019 Phys. Rev. Lett. 122 153904Google Scholar
[102] Yu L T, Xue H R, Zhang B L 2021 Appl. Phys. Lett. 118 071102Google Scholar
[103] Mann S A, Alù A 2021 Phys. Rev. Lett. 127 123601Google Scholar
[104] Chen F J, Xue H R, Pan Y, Wang M R, Hu Y H, Zhang L, Chen Q L, Han S, Liu G G, Gao Z, Zhou P H, Chen H S, Zhang B L, Yang Y H 2023 arXiv: 2208.07228 [physics.app-ph]
[105] He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 872Google Scholar
[106] Porras M A 2023 PIER 177 95Google Scholar
[107] Bahari B, Hsu L, Pan S H, Preece D, Ndao A, El Amili A, Fainman Y, Kanté B 2021 Nat. Phys. 17 700Google Scholar
计量
- 文章访问数: 4814
- PDF下载量: 473
- 被引次数: 0