-
磁共振无线电能传输(Wireless power transfer,WPT)技术是近年来近场调控的研究重点之一,其在移动电话、植入式医疗设备以及电动汽车等诸多方面都具有重要应用价值。对于复杂传能通道需求(机械臂等),通常需要引入中继线圈构造多米诺耦合阵列。然而,传统的多米诺耦合阵列存在明显的局限性:近场耦合导致的多重频率劈裂,使得系统无法保持固定的工作频率;耦合阵列易受到构造误差及参数扰动影响;目前研究多数集中在单负载传输,多负载传输系统仍然亟待开发;能量传输方向难以灵活控制。近年来,光子人工微结构为拓扑物理提供了良好的研究平台,使得拓扑特性得到了广泛的研究。拓扑结构的最显著特征是具有非零的拓扑不变量以及由体边对应确定的鲁棒性边界态,这一天然特性能够免疫制造缺陷和无序扰动。不仅如此,通过调整拓扑态的波函数分布能够使能量精准局域,从而实现定向的WPT。因此,将拓扑模式用于耦合阵列WPT具有重要的科学意义。本文主要阐明了基于宇称-时间(Parity-time,PT)对称的通用型双线圈和三线圈WPT的基本原理,并且介绍了不同拓扑构型下的多米诺线圈阵列能够实现鲁棒的WPT,包括一维周期性模型(SSH链组成的有效二阶PT对称和有效三阶PT对称系统)、一维非周期性模型(拓扑缺陷态、类SSH链、准周期Harper链)以及高阶拓扑模型,最后对拓扑模式在WPT的应用方向进行了展望。Magnetic resonance wireless power transfer (WPT) has gradually become a popular research topic of near-field regulation in recent years, with wide application scenarios in mobile phones, implantable medical devices, electric vehicles, and many other fields. However, several challenges remain to be addressed. Near-field coupling induces multiple frequency splits, preventing the system from maintaining a fixed operating frequency; the coupled arrays are susceptible to structural errors and parameter perturbations; current research primarily focuses on single-load transmission, the multi-load transmission systems are still underdeveloped; the direction of transmission is difficult to control flexibly. In recent years, photonic artificial microstructures have provided a flexible platform for studying topological physics, driving significant research interest in their fundamental topological characteristics. The most prominent feature of topological structures is their nonzero topological invariants and the robust edge states determined by the bulk-edge correspondence, which can overcome disturbances caused by defects and disorders. Moreover, by modulating the wave function distribution of topological states, energy can be precisely localized, enabling directional WPT. Therefore, implementing topological modes in WPT systems is of significant scientific importance.
This review summarizes recent research in topological models for robust WPT, which is divided into three main parts. The first part introduces one-dimensional periodic topological structures, focusing primarily on the significant improvements in transmission efficiency and robustness achieved by utilizing topological edge states in the Su-Schrieffer-Heeger(SSH) model for WPT. Moreover, a composite chain formed by two SSH chains was constructed to realize a higher-order parity-time (PT) symmetric topological model. This approach addresses frequency splitting caused by coupled edge states and exhibits lower power losses in standby mode. The second part discusses several types of aperiodic one-dimensional topological chains. By introducing topological defect states at the interface between two different dimer chain, robust multi-load WPT was achieved. Furthermore, based on the integration of artificial intelligence algorithms, the SSH-like topological model enables more efficient and robust WPT compared to conventional SSH chain. The asymmetric edge states in quasi-periodic Harper chain provide a solution for directional transmission in WPT applications. By introducing nonlinear circuits, this model enables active control of the transfer direction. The third part presents the application of high-order topological corner states in multi-load robust WPT, demonstrating the selective excitation of both symmetric and asymmetric corner modes.
Finally, future perspectives on the application of topological modes in WPT systems are discussed. With the development of new physics, the integration of non-Hermitian physics and topological physics holds great promise for achieving simultaneous energy-information transfer, which is expected to enable compatible WPT, wireless communication, and wireless sensing within a single system. Such a fusion technology will offer breakthroughs in efficiency, robustness, and multifunctionality for next-generation wireless systems.-
Keywords:
- topological photonics /
- parity-time symmetry /
- wireless power transfer
-
[1] Chen Y, Xiao W, Guan Z, Zhang B, Qiu D, Wu M 2019 IEEE Trans. Ind. Electron. 66 6604
[2] Hirai J, Kim T W, Kawamura A 2000 IEEE Trans. Power Electron.15 21
[3] Beh T C, Kato M, Imura T, Oh S, Hori Y 2012 IEEE Trans. Ind. Electron. 60 3689
[4] Lee B, Kim J, Jo H, Min H, Bien F 2025 Adv. Sci. 12 2407827
[5] Wenaas E P 2014 IEEE Technol. Soc.33 12
[6] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljačić M 2007 Science 317 83
[7] Karalis A, Joannopoulos J D, Soljačić M 2008 Ann. Phys. 323 34
[8] Song M, Jayathurathnage P, Zanganeh E, Krasikova M, Smirnov P, Belov P, Kapitanova P, Simovski C, Tretyakov S, Krasnok A 2021 Nat. Electron. 4 707
[9] Sample A P, Meyer D T, Smith J R 2010 IEEE Trans. Ind. Electron. 58 544
[10] Ahn D, Hong S 2014 IEEE Trans. Ind. Electron. 61 2225
[11] Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N, Xie P, Wang Z, Fan G, Liu H, Liu C, Li T, Yan C, Guo Z 2018 J. Mater. Chem. C 6 2925
[12] Zhong W, Zhang C, Liu X, Hui S Y R 2014 IEEE Trans. Power Electron. 30 933
[13] Mi C C, Buja G, Choi S Y, Rim C T 2016 IEEE Trans. Ind. Electron. 63 6533
[14] Wei Z, Zhang B 2021 IEEE Trans. Power Electron. 36 11135
[15] Sakhdari M, Hajizadegan M, Chen P Y 2020 Phys. Rev. Res. 2 013152
[16] Stevens C J 2014 IEEE Trans. Power Electron. 30 6182
[17] Lee C K, Zhong W X, Hui S Y R 2011 IEEE Trans. Power Electron. 27 1905
[18] Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959
[19] Feis J, Stevens C, Shamonina E 2020 Appl. Phys. Lett. 117 134106
[20] Wang L K, Wang Y Q, Guo Z W, Jiang H T, Li Y H, Yang Y P, Chen H 2024 Acta Phys. Sin. 73 201101 (in Chinese) [王利凯, 王宇倩, 郭志伟, 江海涛, 李云辉, 羊亚平, 陈鸿 2024 物理学报 73 201101]
[21] Mariello M, Proctor C M 2025 Adv. Mater. Technol. 10 2400797
[22] Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photon. 8 821
[23] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006
[24] Reisner M, Bellec M, Kuhl U, Mortessagne F 2021 Opt. Mater. Express 11 629
[25] Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907
[26] Gao Z, Gao F, Zhang Y, Luo Y, Zhang B 2018 Adv. Opt. Mater. 6 1800532
[27] Rider M S, Buendía Á, Abujetas D R, Huidobro P A, Sánchez Gil J A, Giannini V 2022 ACS Photonics 9 1483
[28] Xie B Y, Wang H F, Zhu X Y, Lu M H, Wang Z D, Chen Y F 2018 Opt. Express 26 24531
[29] Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q, Gong Q 2021 Adv. Opt. Mater. 9 2001739
[30] Lan Z, Chen M L, Gao F, Zhang S, Sha W E I 2022 Rev. Phys. 9 100076
[31] Xie B Y, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M H, Chen Y F 2021 Nat. Rev. Phys. 3 520
[32] Zhang F, Kane C L, Mele E J 2013 Phys. Rev. Lett. 110 046404
[33] Wang H, Zhang X, Hua J, Lei D, Lu M, Chen Y 2021 J. Opt. 23 123001
[34] Zhang X, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582
[35] Smirnova D, Leykam D, Chong Y, Kivshar Y 2020 Appl. Phys. Rev. 7 021306
[36] Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser & Photonics Rev. 16 2100300
[37] Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402
[38] Li F F, Wang H X, Xiong Z, Lou Q, Chen P, Wu R X, Poo Y, Jiang J H, John S 2018 Nat. Commun. 9 2462
[39] Jiang C, Wu Y, Qin M, Ke S 2022 J. Lightwave Technol. 41 2205
[40] Khanikaev A B, Mousavi S H, Tse W, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233
[41] Takata K, Notomi M 2018 Phys. Rev. Lett. 121 213902
[42] Cáceres Aravena G, Torres L F, Vicencio R A 2020 Phys. Rev. A 102 023505
[43] Huang Q, Guo Z, Feng J, Yu C, Jiang H, Zhang Z, Wang Z, Chen H 2019 Laser & Photonics Rev. 13 1800339
[44] Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240
[45] Zhang Z, Teimourpour M, Arkinstall J, Pan M, Miao P, Schomerus H, El Ganainy R, Feng L 2019 Laser & Photonics Rev. 13 1800202
[46] Guo Z, Wang Y, Ke S, Su X, Ren J, Chen H 2024 Adv. Phys. Res. 3 2300125
[47] Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710
[48] Zhu W, Fang X, Li D, Xiao M, Jing L, Chan C T 2018 Phys. Rev. Lett. 121 124501
[49] Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698
[50] Ezawa M 2021 Phys. Rev. B 104 235420
[51] St Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photon. 11 651
[52] Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 5142
[53] Kraus Y E, Zilberberg O 2012 Phys. Rev. Lett. 109 116404
[54] Wang Y, Jia Z, Huang T, Geng Y, Yang Z, Lin F. 2025 IEEE Trans. Power Electron 40 10123
[55] Magann A B, Rudinger K M, Grace M D, Sarovar M 2022 Phys. Rev. Lett. 129 250502
[56] Zhang L, Yang Y, Jiang Z, Chen Q, Yan Q, Wu Z, Zhang B, Huangfu J, Chen H 2021 Science Bull. 66 974
[57] Kim M, Jacob Z, Rho J 2020 Light: Sci. Appl. 9 130
[58] Bobylev D A, Tikhonenko D I, Zhirihin D V, Mazanov M, Vakulenko A 2023 Laser & Photonics Rev. 17 2100567
[59] Guo Z, Jiang J, Jiang H, Ren J, Chen H 2021 Phys. Rev. Res. 3 013122
[60] Zangeneh Nejad F, Fleury R 2020 Adv. Mater. 32 2001034
[61] Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H, Chen H 2018 Opt. Express 26 12891
[62] Guo Z, Yang F, Zhang H, Wu X, Zhu K, Jiang J, Jiang H, Li Y, Chen H, Yang Y, Li Y 2024 Natl. Sci. Rev. 11 nwad172
[63] Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photon. Res. 9 574
[64] Guo Z, Jiang J, Wu X, Zhang, H, Hu S, Wang, Yuqian, Li, Y, Yang Y, Chen, H 2023 Fundam. Res. 11 2667
[65] Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Chen H 2021 Phys. Rev. Appl. 15 014009
[66] Du L, Liu Y, Li M, Zhou X, Wang S, Zhao Q, Li Z, Tao L, Xiao X, Song K, Zhao X 2024 Phys. Rev. B 110 155415
[67] He L, Lan Z, Yang B, Yao J, Ren Q, You J W, Sha W E, Yang Y, Wu L 2024 Adv. Photonics Nexus 3 016009
[68] Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H, Chen H 2020 Phys. Rev. B 101 165427
[69] Zhu B, Wang Q, Leykam D, Xue H, Wang Q J, Chong Y D 2022 Phys. Rev. Lett. 129 013903
[70] Qin H, Zhang Z, Chen Q, Fleury R 2024 Phys. Rev. Res. 6 013031
[71] Wan L, Zhang H, Li Y, Yang Y, Chen H, Guo Z 2026 Front. Phys. 21 14200
[72] Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photon. 15 77
[73] GENTY G, SALMELA L, DUDLEY J M, et al. Machine learning and applications in ultrafast photonics [J]. Nature Photonics, 2021, 15(2): 91-101.
[74] Nadell C C, Huang B, Malof J M, Padilla W J 2019 Opt. Express 27 27523
[75] Wang L K, Wang Y Q, Hu S Y, Li Y H, Chen H, Ce W, Guo Z 2025 Prog. Electromagn. Res. 183 59
[76] Hadad Y, Soric J C, Khanikaev A B, Alù A 2018 Nat. Electron. 1 178
[77] Guo Z, Wu X, Ke S, Dong L, Deng F, Jiang H, Chen H 2022 New J. Phys. 24 063001
[78] Liu X, Agarwal G S 2017 Sci. Rep. 7 45015
[79] ywa M 2021 Phys. Rev. B 103 155425
[80] Yang F, Song J, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Chen H 2021 Opt. Express 29 7844
[81] Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901
[82] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346
[83] Kirsch M S, Zhang Y, Kremer M, Maczewsky L J, Ivanov S K, Kartashov Y V, Torner L, Bauer D, Szameit A, Heinrich M 2021 Nat. Phys. 17 995
[84] Ezawa M 2018 Phys. Rev. Lett. 120 026801
[85] Wei M S, Liao M J, Wang C, Zhu C, Yang Y, Xu J 2023 Opt. Express 31 3427
[86] Wei M S, Wang Y Q, Liao M J, Yang Y, Xu J 2023 Opt. Express 31 39424
[87] On M B, Ashtiani F, Sanchez Jacome D, Perez Lopez D, Yoo S J B, Blanco Redondo A 2024 Nat. Commun. 15 629
[88] Jiang J, Hu S, Guo Z, Ke S, Wu X, Yang F, Sun Y, Chen H 2025 Rev. Phys. 13 100112
[89] Li C, Yang R, Huang X, Fu Q, Fan Y, Zhang F 2024 Phys. Rev. Lett. 132 156601
[90] Wang L, Wang Y, Hu S, Sun Y, Jiang H, Li Y, Yang Y, Chen H, Guo Z 2025 Front. Phys. 20 054201
计量
- 文章访问数: 32
- PDF下载量: 0
- 被引次数: 0