搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高维宇称-时间对称系统中的信息恢复与临界性

曲登科 范毅 薛鹏

引用本文:
Citation:

高维宇称-时间对称系统中的信息恢复与临界性

曲登科, 范毅, 薛鹏

Information retrieval and criticality in high-dimensional parity-time-symmetric systems

Qu Deng-Ke, Fan Yi, Xue Peng
PDF
HTML
导出引用
  • 近期, 满足宇称-时间对称性的非厄米系统的研究取得了令人印象深刻的进展, 如物理系统拓扑性质和奇异点处临界性的观测. 宇称-时间对称的非幺正动力学的一个至关重要的方面就是系统与环境之间的信息流动. 本文利用量子态间的可区分性这一物理量, 统一量化了低维与高维宇称-时间对称的非厄米系统和环境之间的信息流动. 数值计算结果表明, 在宇称-时间对称性保持的相区域可以观测到量子态间可区分性的振荡以及完全的信息恢复. 然而在宇称时间对称性破坏的相区域, 信息处于指数衰减的状态. 奇异点处标志着信息流动的可逆与不可逆的临界性, 量子态间的可区分性表现出幂律衰减的行为. 理解非幺正量子动力学中的这些独特的现象为研究开放量子系统提供了重要视角, 并且有助于其在量子信息中的应用.
    Recently, impressive progress has been made in the study of non-Hermitian systems with parity-time symmetry, such as observations of topological properties of physical systems and criticality at exceptional points. A crucial aspect of parity-time symmetric nonunitary dynamics is the information flow between the system and the environment. In this paper, we use the physical quantity, distinguishability between quantum states, to uniformly quantify the information flow between low-dimensional and high-dimensional parity-time symmetric non-Hermitian systems and environments. The numerical results show that the oscillation of quantum state distinguishability and complete information retrieval and can be obtained in the parity-time-unbroken phase. However, the information decays exponentially in the parity-time-broken phase. The exceptional point marks the criticality between reversibility and irreversibility of information flow, and the distinguishability between quantum states exhibits the behavior of power-law decay. Understanding these unique phenomena in nonunitary quantum dynamics provides an important perspective for the study of open quantum systems and contributes to their application in quantum information.
      通信作者: 曲登科, dkqu@seu.edu.cn ; 薛鹏, gnep.eux@gmail.com
    • 基金项目: 国家杰出青年科学基金(批准号: 12025401)和国家自然科学基金(批准号: U1930402, 12088101)资助的课题
      Corresponding author: Qu Deng-Ke, dkqu@seu.edu.cn ; Xue Peng, gnep.eux@gmail.com
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 12025401) and the National Natural Science Foundation of China (Grant Nos. U1930402, 12088101)
    [1]

    Chen X Y, Zhang N N, He W T, et al. 2022 npj Quantum Inf. 8 22Google Scholar

    [2]

    Zou D, Chen T, He W, et al. 2021 Nat. Commun. 12 7201Google Scholar

    [3]

    Wu T, Zhang W, Zhang H, et al. 2020 Phys. Rev. Lett. 124 083901Google Scholar

    [4]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [5]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [6]

    Yang Z, Chiu C K, Fang C, Hu J 2020 Phys. Rev. Lett. 124 186402Google Scholar

    [7]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [8]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [9]

    Zhou Z, Yu Z 2019 Phys. Rev. A 99 043412Google Scholar

    [10]

    Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201(R

    [11]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(RGoogle Scholar

    [12]

    Guo C X, Wang X R, Kou S P 2020 Phys. Rev. B 101 144439Google Scholar

    [13]

    Zhang S, Jin L, Song Z 2022 Chin. Phys. B 31 010312Google Scholar

    [14]

    Guo C X, Liu C H, Zhao X M, Liu Y, Chen S 2021 Phys. Rev. Lett. 127 116801Google Scholar

    [15]

    Liu Y, Zhou Q, Chen S 2021 Phys. Rev. B 104 024201

    [16]

    Cui D, Li T, Li J, Yi X 2021 New J. Phys. 23 123037Google Scholar

    [17]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [18]

    Yang X, Cao Y, Zhai Y 2022 Chin. Phys. B 31 010308Google Scholar

    [19]

    Ding P, Yi W 2022 Chin. Phys. B 31 010309Google Scholar

    [20]

    Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131Google Scholar

    [21]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [22]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [23]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [24]

    Heiss W D 2012 J. Phys. A 45 444016Google Scholar

    [25]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [26]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [27]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [28]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(RGoogle Scholar

    [29]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173Google Scholar

    [30]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [31]

    Liu Z P, Zhang J, Özdemir S K, et al. 2016 Phys. Rev. Lett. 117 110802Google Scholar

    [32]

    Gao T, Estrecho E, Bliokh K Y, et al. 2015 Nature 526 554Google Scholar

    [33]

    Graefe E M, Korsch H J, Niederle A E 2008 Phys. Rev. Lett. 101 150408Google Scholar

    [34]

    Chen S L, Chen G Y, Chen Y N 2014 Phys. Rev. A 90 054301Google Scholar

    [35]

    Yin S, Huang G Y, Lo C Y, Chen P 2017 Phys. Rev. Lett. 118 065701Google Scholar

    [36]

    Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [37]

    Xiao L, Zhan X, Bian Z, et al. 2017 Nat. Phys. 13 1117Google Scholar

    [38]

    Wang K, Qiu X, Xiao L, et al. 2019 Nat. Commun. 10 2293Google Scholar

    [39]

    Xiao L, Qu D, Wang K, et al. 2021 PRX Quantum 2 020313Google Scholar

    [40]

    Xiao L, Wang K, Zhan X, et al. 2019 Phys. Rev. Lett. 123 230401Google Scholar

    [41]

    Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. A 102 030201(RGoogle Scholar

    [42]

    Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. Res. 2 022039(RGoogle Scholar

    [43]

    Xiao L, Deng T, Wang K, Wang Z, Yi W, Xue P 2021 Phys. Rev. Lett. 126 230402Google Scholar

    [44]

    Zurek W H 2003 Rev. Mod. Phys 75 715Google Scholar

    [45]

    de Vega I, Alonso D 2017 Rev. Mod. Phys 89 015001Google Scholar

    [46]

    Kawabata K, Ashida Y, Ueda M 2017 Phys. Rev. Lett. 119 190401Google Scholar

    [47]

    Misra B, Sudarshan E C G 1977 J. Math. Phys. 18 756Google Scholar

    [48]

    Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295Google Scholar

    [49]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar

    [50]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [51]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [52]

    Viola L, Lloyd S, Knill E 1999 Phys. Rev. Lett. 83 4888Google Scholar

    [53]

    Palma G M, Suominen K A, Ekert A K 1996 Proc. R. Soc. A 452 567Google Scholar

    [54]

    Zanardi P, Rasetti M 1997 Phys. Rev. Lett. 79 3306Google Scholar

    [55]

    Duan L M, Guo G C 1998 Phys. Rev. A 57 737Google Scholar

    [56]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594Google Scholar

    [57]

    Lidar D A, Bacon D, Whaley K B 1999 Phys. Rev. Lett. 82 4556Google Scholar

    [58]

    Knill E, Laflamme R, Viola L 2000 Phys. Rev. Lett. 84 2525Google Scholar

    [59]

    Beige A, Braun D, Tregenna B, Knight P L 2000 Phys. Rev. Lett. 85 1762Google Scholar

    [60]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405Google Scholar

    [61]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp403–409

    [62]

    Fuchs C A, van de Graaf J 1999 IEEE Trans. Inf. Theory 45 1216Google Scholar

    [63]

    Gilchrist A, Langford N K, Nielsen M A 2005 Phys. Rev. A 71 062310Google Scholar

    [64]

    Ruskai M B 1994 Rev. Math. Phys. 06 1147Google Scholar

    [65]

    Erez N, Gordon G, Nest M, Kurizki G 2008 Nature 452 724Google Scholar

    [66]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402Google Scholar

    [67]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401Google Scholar

    [68]

    Laine E M, Piilo J, Breuer H P 2010 Phys. Rev. A 81 062115Google Scholar

    [69]

    Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403Google Scholar

    [70]

    Luo A, Fu S, Song H 2012 Phys. Rev. A 86 044101Google Scholar

    [71]

    Chruściński D, Maniscalco S 2014 Phys. Rev. Lett. 112 120404Google Scholar

    [72]

    Chruściński D, Macchiavello C, Maniscalco S 2017 Phys. Rev. Lett. 118 080404Google Scholar

    [73]

    Breuer H P, Laine E M, Piilo J, Vacchini B 2016 Rev. Mod. Phys. 88 021002Google Scholar

    [74]

    Wolf M M, Cirac J I 2008 Commun. Math. Phys. 279 147Google Scholar

    [75]

    Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115Google Scholar

    [76]

    Lu X M, Wang X, Sun C P 2010 Phys. Rev. A 82 042103Google Scholar

    [77]

    Jiang M, Luo S 2013 Phys. Rev. A 88 034101Google Scholar

    [78]

    Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102Google Scholar

    [79]

    Tang J S, Wang Y T, Yu S, et al. 2016 Nat. Photonics 10 642Google Scholar

    [80]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [81]

    Graefe E M, Günther U, Korsch H J, Niederle A E 2008 J. Phys. A 41 255206Google Scholar

    [82]

    Quiroz-Juárez M A, Perez-Leija A, Tschernig K, et al. 2019 Photonics Res. 7 862Google Scholar

    [83]

    Caves C M 1982 Phys. Rev. D 26 1817Google Scholar

    [84]

    Scheel S, Szameit A 2018 Europhys. Lett. 122 34001Google Scholar

    [85]

    Wang K, Qiu X, Xiao L, et al. 2019 Phys. Rev. Lett. 122 020501Google Scholar

    [86]

    Zhan X, Xiao L, Bian Z, et al. 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [87]

    Xiao L, Deng T S, Wang K, et al. 2020 Nat. Phys. 16 761Google Scholar

    [88]

    Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S, Szameit A 2019 Nat. Photonics 13 883Google Scholar

    [89]

    Naghiloo M, Abbasi M, Joglekar Y N, Murch K W 2019 Nat. Phys. 19 1232

    [90]

    Zhan X, Wang K, Xiao L, et al. 2020 Phys. Rev. A 101 010302(RGoogle Scholar

    [91]

    Xue P 2022 Chin. Phys. B 31 010311Google Scholar

    [92]

    Xue P, Sanders B C, Leibfried D 2009 Phys. Rev. Lett. 103 183602Google Scholar

    [93]

    Wang K, Xiao L, Budich J C, Yi W, Xue P 2021 Phys. Rev. Lett. 127 026404Google Scholar

    [94]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602Google Scholar

    [95]

    Wang X, Xiao L, Qiu X, Wang K, Yi W, Xue P 2018 Phys. Rev. A 98 013835Google Scholar

    [96]

    Xiao L, Qiu X, Wang K, et al. 2018 Phys. Rev. A 98 063847Google Scholar

  • 图 1  在宇称-时间对称的两能级系统的信息流动 (a), (b) 在宇称-时间对称保持的区域($0<a<1$), 量子态的可区分性表现出周期性振荡, 当逐渐靠近奇异点($a=1$)时, 信息恢复的周期会变长; (c) 在宇称-时间对称性被破坏的区域($a > $$ 1$), 量子态的可区分性在一直在衰减

    Fig. 1.  Information flow in the parity-time-symmetric two-level system: (a), (b) The distinguishability oscillates with period in the parity-time-unbroken phase ($0<a<1$). When approaching the exceptional point ($a=1$), the period of the information retrieval. (c) The distinguishability between quantum states is declining in the parity-time-symmetry-broken regime ($a>1$)

    图 2  在宇称-时间对称的两能级系统在奇异点处($a=1$), 量子态的可区分性的幂律行为

    Fig. 2.  Power-law behavior of the distinguishability of the parity-time-symmetric system at the exceptional point $a=1$

    图 3  宇称-时间对称的四能级系统的信息流动 (a), (b) 在宇称-时间对称保持的区域($\gamma<J$), 量子态的可区分性表现出周期性振荡, 当逐渐靠近奇异点($\gamma=J$)时, 信息恢复的周期会变长; (c) 在宇称-时间对称性被破坏的区域($\gamma> $$ J$), 量子态的可区分性在一直在衰减

    Fig. 3.  Information flow in the parity-time-symmetric four-level system: (a), (b) The distinguishability oscillates with period in the parity-time-unbroken phase ($\gamma<J$). When approaching the exceptional point ($\gamma=J$), the period of the information retrieval. (c) The distinguishability between quantum states is declining in the parity-time-symmetry-broken regime ($\gamma>J$)

    图 4  在宇称-时间对称的四能级系统在奇异点处($\gamma=J$), 量子态的可区分性的幂律行为.

    Fig. 4.  Power-law behavior of the distinguishability of the parity-time-symmetric system at the exceptional point $\gamma=J$.

  • [1]

    Chen X Y, Zhang N N, He W T, et al. 2022 npj Quantum Inf. 8 22Google Scholar

    [2]

    Zou D, Chen T, He W, et al. 2021 Nat. Commun. 12 7201Google Scholar

    [3]

    Wu T, Zhang W, Zhang H, et al. 2020 Phys. Rev. Lett. 124 083901Google Scholar

    [4]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [5]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [6]

    Yang Z, Chiu C K, Fang C, Hu J 2020 Phys. Rev. Lett. 124 186402Google Scholar

    [7]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [8]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [9]

    Zhou Z, Yu Z 2019 Phys. Rev. A 99 043412Google Scholar

    [10]

    Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201(R

    [11]

    Wang X R, Guo C X, Kou S P 2020 Phys. Rev. B 101 121116(RGoogle Scholar

    [12]

    Guo C X, Wang X R, Kou S P 2020 Phys. Rev. B 101 144439Google Scholar

    [13]

    Zhang S, Jin L, Song Z 2022 Chin. Phys. B 31 010312Google Scholar

    [14]

    Guo C X, Liu C H, Zhao X M, Liu Y, Chen S 2021 Phys. Rev. Lett. 127 116801Google Scholar

    [15]

    Liu Y, Zhou Q, Chen S 2021 Phys. Rev. B 104 024201

    [16]

    Cui D, Li T, Li J, Yi X 2021 New J. Phys. 23 123037Google Scholar

    [17]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [18]

    Yang X, Cao Y, Zhai Y 2022 Chin. Phys. B 31 010308Google Scholar

    [19]

    Ding P, Yi W 2022 Chin. Phys. B 31 010309Google Scholar

    [20]

    Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131Google Scholar

    [21]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [22]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar

    [23]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [24]

    Heiss W D 2012 J. Phys. A 45 444016Google Scholar

    [25]

    Makris K G, El-Ganainy R, Christodoulides D N, Musslimani Z H 2008 Phys. Rev. Lett. 100 103904Google Scholar

    [26]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [27]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [28]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(RGoogle Scholar

    [29]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173Google Scholar

    [30]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [31]

    Liu Z P, Zhang J, Özdemir S K, et al. 2016 Phys. Rev. Lett. 117 110802Google Scholar

    [32]

    Gao T, Estrecho E, Bliokh K Y, et al. 2015 Nature 526 554Google Scholar

    [33]

    Graefe E M, Korsch H J, Niederle A E 2008 Phys. Rev. Lett. 101 150408Google Scholar

    [34]

    Chen S L, Chen G Y, Chen Y N 2014 Phys. Rev. A 90 054301Google Scholar

    [35]

    Yin S, Huang G Y, Lo C Y, Chen P 2017 Phys. Rev. Lett. 118 065701Google Scholar

    [36]

    Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [37]

    Xiao L, Zhan X, Bian Z, et al. 2017 Nat. Phys. 13 1117Google Scholar

    [38]

    Wang K, Qiu X, Xiao L, et al. 2019 Nat. Commun. 10 2293Google Scholar

    [39]

    Xiao L, Qu D, Wang K, et al. 2021 PRX Quantum 2 020313Google Scholar

    [40]

    Xiao L, Wang K, Zhan X, et al. 2019 Phys. Rev. Lett. 123 230401Google Scholar

    [41]

    Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. A 102 030201(RGoogle Scholar

    [42]

    Bian Z, Xiao L, Wang K, et al. 2020 Phys. Rev. Res. 2 022039(RGoogle Scholar

    [43]

    Xiao L, Deng T, Wang K, Wang Z, Yi W, Xue P 2021 Phys. Rev. Lett. 126 230402Google Scholar

    [44]

    Zurek W H 2003 Rev. Mod. Phys 75 715Google Scholar

    [45]

    de Vega I, Alonso D 2017 Rev. Mod. Phys 89 015001Google Scholar

    [46]

    Kawabata K, Ashida Y, Ueda M 2017 Phys. Rev. Lett. 119 190401Google Scholar

    [47]

    Misra B, Sudarshan E C G 1977 J. Math. Phys. 18 756Google Scholar

    [48]

    Itano W M, Heinzen D J, Bollinger J J, Wineland D J 1990 Phys. Rev. A 41 2295Google Scholar

    [49]

    Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401Google Scholar

    [50]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [51]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [52]

    Viola L, Lloyd S, Knill E 1999 Phys. Rev. Lett. 83 4888Google Scholar

    [53]

    Palma G M, Suominen K A, Ekert A K 1996 Proc. R. Soc. A 452 567Google Scholar

    [54]

    Zanardi P, Rasetti M 1997 Phys. Rev. Lett. 79 3306Google Scholar

    [55]

    Duan L M, Guo G C 1998 Phys. Rev. A 57 737Google Scholar

    [56]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594Google Scholar

    [57]

    Lidar D A, Bacon D, Whaley K B 1999 Phys. Rev. Lett. 82 4556Google Scholar

    [58]

    Knill E, Laflamme R, Viola L 2000 Phys. Rev. Lett. 84 2525Google Scholar

    [59]

    Beige A, Braun D, Tregenna B, Knight P L 2000 Phys. Rev. Lett. 85 1762Google Scholar

    [60]

    Brody D C, Graefe E M 2012 Phys. Rev. Lett. 109 230405Google Scholar

    [61]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp403–409

    [62]

    Fuchs C A, van de Graaf J 1999 IEEE Trans. Inf. Theory 45 1216Google Scholar

    [63]

    Gilchrist A, Langford N K, Nielsen M A 2005 Phys. Rev. A 71 062310Google Scholar

    [64]

    Ruskai M B 1994 Rev. Math. Phys. 06 1147Google Scholar

    [65]

    Erez N, Gordon G, Nest M, Kurizki G 2008 Nature 452 724Google Scholar

    [66]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402Google Scholar

    [67]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401Google Scholar

    [68]

    Laine E M, Piilo J, Breuer H P 2010 Phys. Rev. A 81 062115Google Scholar

    [69]

    Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403Google Scholar

    [70]

    Luo A, Fu S, Song H 2012 Phys. Rev. A 86 044101Google Scholar

    [71]

    Chruściński D, Maniscalco S 2014 Phys. Rev. Lett. 112 120404Google Scholar

    [72]

    Chruściński D, Macchiavello C, Maniscalco S 2017 Phys. Rev. Lett. 118 080404Google Scholar

    [73]

    Breuer H P, Laine E M, Piilo J, Vacchini B 2016 Rev. Mod. Phys. 88 021002Google Scholar

    [74]

    Wolf M M, Cirac J I 2008 Commun. Math. Phys. 279 147Google Scholar

    [75]

    Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115Google Scholar

    [76]

    Lu X M, Wang X, Sun C P 2010 Phys. Rev. A 82 042103Google Scholar

    [77]

    Jiang M, Luo S 2013 Phys. Rev. A 88 034101Google Scholar

    [78]

    Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102Google Scholar

    [79]

    Tang J S, Wang Y T, Yu S, et al. 2016 Nat. Photonics 10 642Google Scholar

    [80]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [81]

    Graefe E M, Günther U, Korsch H J, Niederle A E 2008 J. Phys. A 41 255206Google Scholar

    [82]

    Quiroz-Juárez M A, Perez-Leija A, Tschernig K, et al. 2019 Photonics Res. 7 862Google Scholar

    [83]

    Caves C M 1982 Phys. Rev. D 26 1817Google Scholar

    [84]

    Scheel S, Szameit A 2018 Europhys. Lett. 122 34001Google Scholar

    [85]

    Wang K, Qiu X, Xiao L, et al. 2019 Phys. Rev. Lett. 122 020501Google Scholar

    [86]

    Zhan X, Xiao L, Bian Z, et al. 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [87]

    Xiao L, Deng T S, Wang K, et al. 2020 Nat. Phys. 16 761Google Scholar

    [88]

    Klauck F, Teuber L, Ornigotti M, Heinrich M, Scheel S, Szameit A 2019 Nat. Photonics 13 883Google Scholar

    [89]

    Naghiloo M, Abbasi M, Joglekar Y N, Murch K W 2019 Nat. Phys. 19 1232

    [90]

    Zhan X, Wang K, Xiao L, et al. 2020 Phys. Rev. A 101 010302(RGoogle Scholar

    [91]

    Xue P 2022 Chin. Phys. B 31 010311Google Scholar

    [92]

    Xue P, Sanders B C, Leibfried D 2009 Phys. Rev. Lett. 103 183602Google Scholar

    [93]

    Wang K, Xiao L, Budich J C, Yi W, Xue P 2021 Phys. Rev. Lett. 127 026404Google Scholar

    [94]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602Google Scholar

    [95]

    Wang X, Xiao L, Qiu X, Wang K, Yi W, Xue P 2018 Phys. Rev. A 98 013835Google Scholar

    [96]

    Xiao L, Qiu X, Wang K, et al. 2018 Phys. Rev. A 98 063847Google Scholar

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, 2025, 74(1): 010301. doi: 10.7498/aps.74.20240933
    [2] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [3] 张慧洁, 贺衎. 哈密顿量宇称-时间对称性的刻画. 物理学报, 2024, 73(4): 040302. doi: 10.7498/aps.73.20230458
    [4] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [5] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [6] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子. 物理学报, 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [7] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [8] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [9] 祝可嘉, 郭志伟, 陈鸿. 实验观测非厄米系统奇异点的手性翻转现象. 物理学报, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [10] 潘磊. 非厄米线性响应理论及其应用. 物理学报, 2022, 71(17): 170305. doi: 10.7498/aps.71.20220862
    [11] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [12] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220511
    [13] 张毅. 时间尺度上非迁移Birkhoff系统的Mei对称性定理. 物理学报, 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [14] 蔡子. 非平衡量子物态中的对称性与时间维度效应. 物理学报, 2021, 70(23): 230310. doi: 10.7498/aps.70.20211741
    [15] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [16] 李元成, 王小明, 夏丽莉. 完整系统Nielsen方程的统一对称性与守恒量. 物理学报, 2010, 59(5): 2935-2938. doi: 10.7498/aps.59.2935
    [17] 李元成, 夏丽莉, 王小明. 具有非Chetaev型非完整约束的机电系统的统一对称性. 物理学报, 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [18] 李元成, 夏丽莉, 赵 伟, 后其宝, 王 静, 荆宏星. 机电系统的统一对称性. 物理学报, 2007, 56(9): 5037-5040. doi: 10.7498/aps.56.5037
    [19] 丁 宁, 方建会, 张鹏玉, 王 鹏. Poincaré-Chetaev方程的统一对称性. 物理学报, 2006, 55(12): 6197-6202. doi: 10.7498/aps.55.6197
    [20] 茅德强, 李名复, 任尚元. GaP中替代缺陷对的A1对称性深能级波函数. 物理学报, 1984, 33(7): 897-907. doi: 10.7498/aps.33.897
计量
  • 文章访问数:  5515
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-04-06
  • 上网日期:  2022-06-20
  • 刊出日期:  2022-07-05

/

返回文章
返回