搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡量子物态中的对称性与时间维度效应

蔡子

引用本文:
Citation:

非平衡量子物态中的对称性与时间维度效应

蔡子

Symmetries and effect of time dimension in non-equilibrium quantum matter

Cai Zi
PDF
HTML
导出引用
  • 非平衡量子关联体系是近年来受到广泛关注的一类新型量子系统, 其研究对象不局限于某一特定的物理分支, 而是涉及凝聚态物理、原子分子物理和量子光学、量子调控与量子计算、非平衡统计物理等诸多现代物理学的前沿领域. 这些不同体系中涌现出来的非平衡量子关联现象, 既融合了各自体系的不同特征, 又展现出普适的一般规律. 由于其新颖性和复杂性, 这类系统中存在大量未知的基本物理问题和新奇的物理现象, 是当前量子科学理论研究的难点和重点. 同时, 由于量子技术的飞速发展, 理解这类复杂系统对于以量子计算和量子调控为代表的新一代量子科学技术的发展具有重要的现实意义. 本文简要总结了近年来本课题组在非平衡量子多体物理方面的几个代表性工作, 着重讨论了与时间相关的对称性(破缺)导致的新的非平衡量子物态, 准粒子及其中的动力学普适行为.
    Non-equilibrium quantum many-body systems have attracted considerable attention in the past decades. The scope of the research of this kind of novel system involves interdisciplinary research of condensed matter, atomic and molecular physics, quantum optics, quantum information and quantum computation, as well as the non-equilibrium statistical physics. The non-equilibrium phenomena emerging from the aforementioned quantum systems can exhibit rich and universal behaviors, which have far from being well understood due to the novelties and complexities of these systems, and hence the quantum many-body physics becomes the research highlight. At the same time, with the rapid development of quantum techniques, the understanding of these complex systems is of important practical significance due to their potential applications in quantum computation and quantum manipulation. In this paper, we show our recent progress of non-equilibrium quantum many-body systems. We focus on the novel phenomena closely related to the temporary symmetry breaking, including the exotic quantum matter, quasi-particles as well as the dynamical universality classes in non-equilibrium quantum many-body systems.
      通信作者: 蔡子, zcai@sjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0309000)、国家自然科学基金(批准号: 12174251)和上海市科委重点项目(批准号: 2019SHZDZX01)资助的课题
      Corresponding author: Cai Zi, zcai@sjtu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309000), the National Natural Science Foundation of China (Grant No. 12174251), and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01).
    [1]

    张广铭, 于渌 2010 物理 39 543

    Zhang G M, Yu L 2010 Physics 39 543

    [2]

    Fausti D, Tobey R I, Dean N, Kasier S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A 2011 Science 331 189Google Scholar

    [3]

    Wan Y, Moessner R 2017 Phys. Rev. Lett. 119 167203Google Scholar

    [4]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [5]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [6]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401Google Scholar

    [7]

    Mankowsky R, Subedi A, Forst M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A, Cavalleri A 2014 Nature 516 71Google Scholar

    [8]

    Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R 2011 J. Phys. Chem. B 115 5448Google Scholar

    [9]

    Yang Y, Tang T, Duan S, Zhou C, Hao D, Zhang W 2019 Rev. Sci. Instrum. 90 063905Google Scholar

    [10]

    Rigol M, Dunjko V, Olshanii M 2008 Nature (London) 452 854

    [11]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [12]

    Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E, Schmiedmayer J 2012 Science 337 1318Google Scholar

    [13]

    Trotzky S, Chen Y A, Flesch A, McCulloch I P, Schollwöck U, Eisert J, Bloch I 2012 Nat. Phys. 8 325Google Scholar

    [14]

    Braun S, Friesdorf M, Hodgman S S, Schreiber M, Ronzheimer J P, Riera A, del Rey M, Bloch I, Eisert J, Schneider U 2015 Proc. Natl. Acad. Sci. 112 3641Google Scholar

    [15]

    Clark L W, Feng L, Chin C 2016 Science 354 606Google Scholar

    [16]

    Struck J, Ölschläger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, Sengstock K 2011 Science 333 996Google Scholar

    [17]

    Struck J, Ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K, Windpassinger P 2012 Phys. Rev. Lett. 108 225304Google Scholar

    [18]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [19]

    Clark L W, Anderson B M, Feng L, Gaj A, Levin K, Chin C, 2018 Phys. Rev. Lett. 121 030402Google Scholar

    [20]

    Yang X, Cai Z 2021 Phys. Rev. Lett. 126 020602Google Scholar

    [21]

    Cai Z, Huang Y, Liu W V 2020 Chin. Phys. Lett. 37 050503Google Scholar

    [22]

    Wang Z J, Li Q Y, Li W, Cai Z 2021 Phys. Rev. Lett. 126 237201Google Scholar

    [23]

    Ren J, Li Q Y, Li W, Cai Z, Wang X Q 2020 Phys. Rev. Lett. 124 130602Google Scholar

    [24]

    Wang Z J, Navarrete-Benlloch C, Cai Z 2020 Phys. Rev. Lett. 125 115301Google Scholar

    [25]

    Watanabe H, Oshikawa M 2015 Phys. Rev. Lett. 114 251603Google Scholar

    [26]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [27]

    Khemani V, Lazarides A, Moessner R, Sondhi S 2016 Phys. Rev. Lett. 116 250401Google Scholar

    [28]

    Choi S, Choi J, Landig R, Kucsko G, Zhou H Y, Isoya J C, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C, Yao N Y, Demler E, Lukin M D 2017 Nature 543 221Google Scholar

    [29]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I Q, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543 217Google Scholar

    [30]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [31]

    Kozii V, Fu L 2017 arXiv: 1708.05841

    [32]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [33]

    Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604Google Scholar

    [34]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [35]

    McGinley M, Cooper N R 2020 Nat. Phys. 16 1181Google Scholar

    [36]

    Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799Google Scholar

    [37]

    Berg E, Torre E G D, Giamarchi T, Altman E 2009 Phys. Rev. B 77 245119

    [38]

    Deng T S, Pan L, Chen Y, Zhai H 2021 Phys. Rev. Lett. 127 086801Google Scholar

    [39]

    Hohenberg P C, Halperin B I 1977 Rev. Mod. Phys. 49 435Google Scholar

    [40]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889Google Scholar

    [41]

    Lüschen H P, Bordia P, Hodgman S S, Schreiber M, Sarkar S, Daley A J, Fischer M H, Altman E, Bloch I, Schneider U 2017 Phys. Rev. X 7 011034

    [42]

    Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J, Gerbier F 2020 Nat. Phys. 16 21

    [43]

    Cross M Greenside H 2009 Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge: Cambridge University Press)

    [44]

    Pethick C J, Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)

    [45]

    Daley A J, Kollath C, Schollwöck U, Vidal G 2005 J. Stat. Mech. P04005

    [46]

    Mitra A, Giamarchi T 2012 Phys. Rev. B 85 075117Google Scholar

    [47]

    Kamenev A 2011 Field Theory of Non-equilibrium Systems (Cambridge: Cambridge University Press)

    [48]

    Cai Z, Schollwock U, Pollet L 2014 Phys. Rev. Lett. 113 260403Google Scholar

    [49]

    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P 2014 Rev. Mod. Phys. 86 779Google Scholar

  • 图 1  (a) 分立时间晶体态的示意图; (b) 通过含时扰动局部破坏周期驱动的周期性, 导致时间晶体瞬子激发(不同简并时间晶体之间的隧穿)

    Fig. 1.  Schematic diagram of (a) a period doubling dynamics in the presence of periodical driving and two degenerate TC phases and (b) the phase ramping protocol in our model and an instanton-like excitation induced by it.

    图 2  (a)虚时间晶体在2+1维欧几里得时空中一种典型的时空构型的示意图; (b) 其物理性质随温度振荡

    Fig. 2.  (a) A typical world-line configurations of iTC in a (2+1)D Euclidean space; (b) the (inverse) temperature dependence of the CDW order parameter in the iTC phase.

    图 4  量子多体系统在无序、噪声、相互作用、对称性等因素共同作用下产生普适的弛豫动力学行为

    Fig. 4.  Schematic of a open quantum many-body system and its universal dynamics induced by the interplay between disorder, noise, interaction and symmetry.

    图 3  一条对称保护的拓扑量子态(AKLT态)通过不同的方式, 耦合上不同量子环境的示意图

    Fig. 3.  Schematic of the symmetry-protected topological systems (AKLT state) coupled to different quantum baths via various SB couplings.

    图 5  耗散-驱动玻色-赫伯特模型的非平衡稳态中涌现的条纹相 (a), (b) 和奇异玻色液体态(c), (d)

    Fig. 5.  The stripe phase (a), (b) and the exotic bose liquid (c), (d) emerging from the steady state of a dissipative-driven Bose Hubbard model.

    图 6  当前处理非平衡量子关联系统的部分解析与数值方法

    Fig. 6.  A review of current analytical and numerical methods to deal with non-equilibrium quantum many-body systems.

  • [1]

    张广铭, 于渌 2010 物理 39 543

    Zhang G M, Yu L 2010 Physics 39 543

    [2]

    Fausti D, Tobey R I, Dean N, Kasier S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A 2011 Science 331 189Google Scholar

    [3]

    Wan Y, Moessner R 2017 Phys. Rev. Lett. 119 167203Google Scholar

    [4]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [5]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [6]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401Google Scholar

    [7]

    Mankowsky R, Subedi A, Forst M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A, Cavalleri A 2014 Nature 516 71Google Scholar

    [8]

    Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R 2011 J. Phys. Chem. B 115 5448Google Scholar

    [9]

    Yang Y, Tang T, Duan S, Zhou C, Hao D, Zhang W 2019 Rev. Sci. Instrum. 90 063905Google Scholar

    [10]

    Rigol M, Dunjko V, Olshanii M 2008 Nature (London) 452 854

    [11]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [12]

    Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E, Schmiedmayer J 2012 Science 337 1318Google Scholar

    [13]

    Trotzky S, Chen Y A, Flesch A, McCulloch I P, Schollwöck U, Eisert J, Bloch I 2012 Nat. Phys. 8 325Google Scholar

    [14]

    Braun S, Friesdorf M, Hodgman S S, Schreiber M, Ronzheimer J P, Riera A, del Rey M, Bloch I, Eisert J, Schneider U 2015 Proc. Natl. Acad. Sci. 112 3641Google Scholar

    [15]

    Clark L W, Feng L, Chin C 2016 Science 354 606Google Scholar

    [16]

    Struck J, Ölschläger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, Sengstock K 2011 Science 333 996Google Scholar

    [17]

    Struck J, Ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K, Windpassinger P 2012 Phys. Rev. Lett. 108 225304Google Scholar

    [18]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [19]

    Clark L W, Anderson B M, Feng L, Gaj A, Levin K, Chin C, 2018 Phys. Rev. Lett. 121 030402Google Scholar

    [20]

    Yang X, Cai Z 2021 Phys. Rev. Lett. 126 020602Google Scholar

    [21]

    Cai Z, Huang Y, Liu W V 2020 Chin. Phys. Lett. 37 050503Google Scholar

    [22]

    Wang Z J, Li Q Y, Li W, Cai Z 2021 Phys. Rev. Lett. 126 237201Google Scholar

    [23]

    Ren J, Li Q Y, Li W, Cai Z, Wang X Q 2020 Phys. Rev. Lett. 124 130602Google Scholar

    [24]

    Wang Z J, Navarrete-Benlloch C, Cai Z 2020 Phys. Rev. Lett. 125 115301Google Scholar

    [25]

    Watanabe H, Oshikawa M 2015 Phys. Rev. Lett. 114 251603Google Scholar

    [26]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [27]

    Khemani V, Lazarides A, Moessner R, Sondhi S 2016 Phys. Rev. Lett. 116 250401Google Scholar

    [28]

    Choi S, Choi J, Landig R, Kucsko G, Zhou H Y, Isoya J C, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C, Yao N Y, Demler E, Lukin M D 2017 Nature 543 221Google Scholar

    [29]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I Q, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543 217Google Scholar

    [30]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [31]

    Kozii V, Fu L 2017 arXiv: 1708.05841

    [32]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [33]

    Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604Google Scholar

    [34]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [35]

    McGinley M, Cooper N R 2020 Nat. Phys. 16 1181Google Scholar

    [36]

    Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799Google Scholar

    [37]

    Berg E, Torre E G D, Giamarchi T, Altman E 2009 Phys. Rev. B 77 245119

    [38]

    Deng T S, Pan L, Chen Y, Zhai H 2021 Phys. Rev. Lett. 127 086801Google Scholar

    [39]

    Hohenberg P C, Halperin B I 1977 Rev. Mod. Phys. 49 435Google Scholar

    [40]

    Kardar M, Parisi G, Zhang Y C 1986 Phys. Rev. Lett. 56 889Google Scholar

    [41]

    Lüschen H P, Bordia P, Hodgman S S, Schreiber M, Sarkar S, Daley A J, Fischer M H, Altman E, Bloch I, Schneider U 2017 Phys. Rev. X 7 011034

    [42]

    Bouganne R, Aguilera M B, Ghermaoui A, Beugnon J, Gerbier F 2020 Nat. Phys. 16 21

    [43]

    Cross M Greenside H 2009 Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge: Cambridge University Press)

    [44]

    Pethick C J, Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)

    [45]

    Daley A J, Kollath C, Schollwöck U, Vidal G 2005 J. Stat. Mech. P04005

    [46]

    Mitra A, Giamarchi T 2012 Phys. Rev. B 85 075117Google Scholar

    [47]

    Kamenev A 2011 Field Theory of Non-equilibrium Systems (Cambridge: Cambridge University Press)

    [48]

    Cai Z, Schollwock U, Pollet L 2014 Phys. Rev. Lett. 113 260403Google Scholar

    [49]

    Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T, Werner P 2014 Rev. Mod. Phys. 86 779Google Scholar

  • [1] 丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣. J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响. 物理学报, 2025, 74(4): 045201. doi: 10.7498/aps.74.20241364
    [2] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [3] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象. 物理学报, 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [4] 王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏. 磁子学中的拓扑物态与量子效应. 物理学报, 2023, 72(5): 057503. doi: 10.7498/aps.72.20221997
    [5] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [6] 王恩权, 陈浩, 杨毅, 隆正文, HassanabadiHassan. 洛伦兹对称破缺框架下的广义克莱因-戈尔登谐振子. 物理学报, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [7] 王恩, 董文翰, 周辉, 刘猛, 纪洪艳, 孟胜, 孙家涛. 周期场驱动下量子材料的非平衡物态. 物理学报, 2021, 70(13): 138101. doi: 10.7498/aps.70.20201808
    [8] 非平衡量子多体系统专题编者按. 物理学报, 2021, 70(23): 230101. doi: 10.7498/aps.70.230101
    [9] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [10] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [11] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [12] 鲁公儒, 李 祥, 李培英. R-宇称破缺的相互作用研究. 物理学报, 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [13] 董正超. d波超导体NIS结中的时间反演对称态的破缺与准粒子寿命效应. 物理学报, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [14] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅲ)──replica对称破缺解. 物理学报, 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [15] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数. 物理学报, 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [16] 孙宗琦. 振动弯结与点缺陷交互作用时间平均场的对称破缺及自组织现象. 物理学报, 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [17] 周光召, 苏肇冰. 时间反演对称和非平衡统计定常态(Ⅱ). 物理学报, 1981, 30(3): 401-409. doi: 10.7498/aps.30.401
    [18] 周光召, 苏肇冰. 时间反演对称和非平衡统计定常态(Ⅰ). 物理学报, 1981, 30(2): 164-171. doi: 10.7498/aps.30.164
    [19] 侯伯宇. 各级微扰展开下自发破缺的规范无关性、么正性及可重整性. 物理学报, 1977, 26(4): 317-332. doi: 10.7498/aps.26.317
    [20] 赵保恒. 自发破缺规范理论中的光子-光子散射. 物理学报, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
计量
  • 文章访问数:  6042
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2021-10-10
  • 刊出日期:  2021-12-05

/

返回文章
返回