搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阶非厄密物理的磁共振无线电能传输研究进展

王利凯 王宇倩 郭志伟 江海涛 李云辉 羊亚平 陈鸿

引用本文:
Citation:

基于高阶非厄密物理的磁共振无线电能传输研究进展

王利凯, 王宇倩, 郭志伟, 江海涛, 李云辉, 羊亚平, 陈鸿

Research Progress in Magnetic Resonance Wireless Power Transfer Based on Higher-Order Non-Hermitian Physics

Wang Li-kai, Wang Yu-qian, Guo Zhi-wei, Jiang Hai-tao, Li Yun-hui, Yang Yaping, Chen Hong
PDF
导出引用
  • 近年来,基于宇称-时间(Parity-time, PT)对称的非厄密物理机制在磁谐振式无线电能传输(Wireless power transfer, WPT)领域取得了显著进展.非厄密物理不仅有效地解释了当前WPT领域基于电路理论分析的主要实验结果,而且为进一步提升WPT器件的传输效率、距径比、鲁棒性等方面提供了全新的原理支撑.本文主要综述了基于PT对称、高阶PT对称、高阶Anti-PT对称等条件下的高效稳定磁谐振式WPT的研究进展,揭示了非厄密物理在该领域的独特作用机制及重要应用.最后对非厄密物理在WPT领域的应用前景进行了展望.
    In recent years, wireless power transfer (WPT) leveraging parity-time (PT) symmetry has progressed significantly, enhancing efficiency, transfer distance, and robustness. This paper overviews magnetic resonance WPT systems utilizing ideal, asymmetric, high-order, and anti-PT symmetry.
    The first section discusses second-order PT symmetry, evolving from inductive to resonant WPT. Active tuning and nonlinear saturation gain techniques optimize frequency and spontaneously achieve efficient WPT. These methods improve transmission efficiency, especially with dynamic transfer distance changes. The second section covers third-order PT and anti-PT symmetry. Third-order PT systems maintain a fixed eigenfrequency, enabling stable energy transfer. Generalized PT symmetry harnesses bandgaps for further efficiency. BIC in asymmetric systems reveals a pure real mode for stable WPT. Anti-PT symmetry’s ‘level pinning’ maintains stability amidst dynamic changes. The final section summarizes high-order PT symmetry for long-range WPT. Heterojunction coupling and topologically non-trivial chains enhance efficiency and stability. Examples include long-range WPT via relay coils and directional WPT using asymmetric topological edge states.
    In conclusion, this review underscores the pivotal role of PT symmetry, in its various forms, in advancing the performance and reliability of magnetic resonance WPT systems. By enhancing transmission efficiency, range, and stability, these symmetries pave the way for broader applications in fields such as smart homes, medical devices, and electric vehicles. The synthesis of current research findings offers valuable insights and serves as a reference for future developments in WPT technology.
  • [1]

    Tesla N 1914 U. S. Patent 1 732

    [2]

    Hui S Y R, Zhong W X, Lee C K 2013 IEEE Trans. Power Electron 29 4500

    [3]

    Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Ind. Electron. 51 148

    [4]

    Ho S L, Wang J, Fu W N, Sun M 2011 IEEE Trans. Magn. 47 1522

    [5]

    Shen D, Du G, Zeng W, Yang Z, Li J 2020 IEEE Access 8 59648

    [6]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 31 75834

    [7]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [8]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11

    [9]

    Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, Qiu C W, Alù A, Chen L 2023 Nat. Nanotechnol. 18 706

    [10]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752

    [11]

    Özdemir K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783

    [12]

    Zhang S, Jin L, Song Z 2022 Chin. Phys. B 31 010312

    [13]

    Tang Y J, Liang C, Liu Y C 2022 Acta Phys. Sin. 71 171101 (in Chinese) [唐原江,梁超,刘永椿 2022 物理学报 71 171101]

    [14]

    Zhu K J, Guo Z W, Chen H 2022 Acta Phys. Sin. 71 131101 (in Chinese) [祝可嘉,郭志伟,陈鸿 2022 物理学报 71 131101]

    [15]

    Cao W, Wang C, Chen W, Hu S, Wang H, Yang L, Zhang X 2022 Nat Nanotechnol. 17 262

    [16]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [17]

    Li H, Yin S, Galiffi E, Alù A 2021 Phys. Rev. Lett. 127 153903

    [18]

    Yang X, Li J, Ding Y, Xu M, Zhu X F, Zhu J 2022 Phys. Rev. Lett. 128 065701

    [19]

    Chen P Y, Sakhdari M, Hajizadegan M, Cui Q, Cheng M M C, El-Ganainy R, Alù A 2018 Nat. Electron 1 297

    [20]

    Zeng C, Guo Z, Zhu K, Fan C, Li G, Jiang J, Li Y, Jiang H, Yang Y, Sun Y, Chen H 2022 Chin. Phys. B 31 010307

    [21]

    Song M, Jayathurathnage P, Zanganeh E, Krasikova M, Smirnov P, Belov P, Kapitanova P, Simovski C, Tretyakov S, Krasnok, A 2021 Nat. Electron. 4 707

    [22]

    Song M, Belov P, Kapitanova P 2017 Appl. Phys. Rev.4 021102

    [23]

    Sakhdari M, Hajizadegan M, Chen P Y 2020 Phys. Rev. Res. 2 013152

    [24]

    Guo Z, Chen H 2024 Physics 53 33

    [25]

    Miri M A, Alù A 2019 Science 363 7709

    [26]

    Ding K, Fang C, Ma G 2022 Nat. Rev. Phys. 4 745

    [27]

    Sample A P, Meyer D T, Smith J R 2010 IEEE Trans. Ind. Electron. 58 544

    [28]

    Park J, Tak Y, Kim Y, Kim Y, Nam S 2011 IEEE Trans. Antennas Propag.59 1769

    [29]

    Li Y, Wang M, Zhang W, Zhao M, Liu J 2019 Energies 12 2626

    [30]

    Song M, Baryshnikova K, Markvart A, Belov P, Nenasheva E, Simovski C, Kapitanova P 2019 Phys. Rev. Appl. 11 054046

    [31]

    Lerosey G 2017 Nature 546 354

    [32]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387

    [33]

    Guo Z, Jiang H, Li Y, Chen H, Agarwal G.S 2018 Opt. Express 26 627

    [34]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A.20 569

    [35]

    Zhou J, Zhang B, Xiao W, Qiu D, Chen Y 2019 IEEE Trans. Ind. Electron. 66 4097

    [36]

    Assawaworrarit S, Fan S 2020 Nat. Electron 3 273

    [37]

    Zeng C, Sun Y, Li G, Li Y, Jiang H, Yang Y, Chen H 2020 Phys. Rev. Appl. 13 034054

    [38]

    Guo Z, Jiang J, Wu X, Zhang H, Hu S, Wang Y, Li Y, Yang Y, Chen H 2023 Fundam. Res. 11 2667

    [39]

    Xie Y, Zhang Z, Lin Y, Feng T, Xu Y 2021 Phys. Rev. Appl. 15 044024

    [40]

    Zhang H, Guo Z, Li Y, Yang Y, Chen Y, Chen H 2024 Front. Phys. 19 43209

    [41]

    Wu Y, Kang L, Douglas H. Werner 2022 Phys. Rev. Lett. 129 200201

    [42]

    Hao X, Yin K, Zou J, Wang R, Huang Y, Ma X, Dong T 2023 Phys. Rev. Lett. 130 077202

    [43]

    Zhang G Q, You J Q 2019 Phys. Rev. B 99 054404

    [44]

    Wu H C, Jin L, Song Z 2021 Phys. Rev. B 103 235110

    [45]

    Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L, Xiao Y 2016 Nat. Phys. 12 1139

    [46]

    Zhang H, Huang R, Zhang S D, Li Y, Qiu C W, Nori F, Jing H 2020 Nano Lett. 20 7594

    [47]

    Ke S, Zhao D, Liu J, Liu Q, Liao Q, Wang B, Lu P 2019 Opt. Express 27 13858

    [48]

    Guo Z, Yang F, Zhang H, Wu X, Wu Q, Zhu K, Jiang J, Jiang H, Yang Y, Li Y, Chen H 2024 Natl. Sci. Rev. 11 172

    [49]

    Ozaki T, Ohta N, Jimbo T, Hamaguchi K 2021 Nat. Electron. 4 845

    [50]

    Kim H, Yoo S, Joo H, Lee J. An D, Nam S, Han H, Kim D H, Kim S 2022 Sci. Adv. 8 4610

    [51]

    Shu J C, Cao M S, Zhang M, Wang X X, Cao W Q, Fang X Y, Cao M Q 2020 Adv. Funct. Mater. 30 1908299

    [52]

    Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A, Su C J, Xu Y, Haney C R, Waters E A, Kandela I, Krishnan S R, Ray T, Leshock J P, Huang G Y, Chanda D,Rogers J A 2018 Nat. Electron. 1 652

    [53]

    Gutruf P, Yin R T, Lee K B, Ausra J, Brennan J A, Qiao Y, Xie Z, Peralta R, Talarico O, Murillo A, Chen S W, Leshock J P, Haney C R, Waters E A, Zhang C X, Luan H, Huang Y G, Trachiotis G, Efimov I R,Rogers J A 2019 Nat. Commun. 10 5742

    [54]

    Lyu H, John M, Burkland D, Greet B, Post A, Babakhani A, Razavi M 2020 Sci. Rep. 10 2067

    [55]

    Yoo S, Lee J, Joo H, Sunwoo S H, Kim S, Kim D H 2021 Adv. Healthcare Mater. 10 2100614

    [56]

    Kim J, Banks A, Xie Z, Heo S Y, Gutruf P, Lee J W, Xu S, Jang K I, Liu F, Brown G, Choi J, Kim J H, Feng X, Huang Y, Paik U Rogers, J A 2015 Adv. Funct. Mater. 25 4761

    [57]

    Khan S R, Pavuluri S K, Cummins G, Desmulliez M P 2020 Sensors 20 3487

    [58]

    Zhong W X, Lee C K, Ron Hui S Y 2013 IEEE Trans. Ind. Electron 60 261

    [59]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2021 Phys. Rev. Appl. 15 014009

    [60]

    Yang F, Song J, Guo Z, Wu X, Zhu, K, Jiang J, Sun Y, Jiang H, Li Y, Chen H 2021 Opt. Express 29 7844

    [61]

    Zhang L, Yang Y, Jiang Z, Chen Q, Yan Q, Wu Z, Zhang B, Huangfu J, Chen H, 2021 Sci. Bull. 66 974

    [62]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photonics 8 821

    [63]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015

    [64]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006

    [65]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [66]

    Guo Z, Wang Y, Ke S, Su X, Ren J, Chen H 2024 Advanced Physics Research 3 2300125

    [67]

    Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photonics Res. 9 574

    [68]

    Zangeneh‐Nejad F, Fleury R 2020 Adv. Mat. 32 2001034

    [69]

    Feis J, Solymar L, Shamonina E 2023 J. Appl. Phys. 133 22

    [70]

    Puchnin V M, Matvievskaya O V, Slobozhanyuk A P, Shchelokova A V, Olekhno N A 2023 Phys. Rev. Appl. 20 024076

    [71]

    Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 51425

    [72]

    Wu H C, Xu H S, Xie L C, Jin L 2024 Phys. Rev. Lett. 132 083801

    [73]

    Lu C C, Yuan H Y, Zhang H Y, Zhao W, Zhang N E, Zheng Y J, Elshahat S, Liu Y C 2022 Chip 1 100025

    [74]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187

    [75]

    Maamache M, Kheniche L 2020 Prog. Theor. Exp. Phys. 12 123A01

    [76]

    Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S, Qiu C W 2019 Science 364 170

    [77]

    Yang Y, Wang Y P, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2020 Phys. Rev. Lett. 125 147202

    [78]

    Kim D H, Ahn D 2019 IEEE Trans. Power Electron. 35 11391

    [79]

    Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photonics 15 77

    [80]

    Genty G, Salmela L, Dudley J M, Brunner D, Kokhanovskiy A, Kobtsev S, Turitsyn S K 2021 Nat. Photonics 15 91

    [81]

    Nadell C C, Huang B, Malof J M, Padilla W J 2019 Opt. Express 27 27523

  • [1] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, doi: 10.7498/aps.73.20240871
    [2] 张慧洁, 贺衎. 哈密顿量宇称-时间对称性的刻画. 物理学报, doi: 10.7498/aps.73.20230458
    [3] 张光成, 孙武, 周志鹏, 全秀娥, 叶伏秋. 周期调制四通道光学波导的宇称-时间对称特性调控和动力学研究. 物理学报, doi: 10.7498/aps.73.20240690
    [4] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子. 物理学报, doi: 10.7498/aps.72.20230082
    [5] 非厄米物理前沿专题编者按. 物理学报, doi: 10.7498/aps.71.130101
    [6] 潘磊. 非厄米线性响应理论及其应用. 物理学报, doi: 10.7498/aps.71.20220862
    [7] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, doi: 10.7498/aps.71.20220511
    [8] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, doi: 10.7498/aps.70.20220511
    [9] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, doi: 10.7498/aps.71.20220456
    [10] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, doi: 10.7498/aps.71.20220270
    [11] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, doi: 10.7498/aps.70.20220270
    [12] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, doi: 10.7498/aps.71.20221323
    [13] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控. 物理学报, doi: 10.7498/aps.68.20190862
    [14] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制. 物理学报, doi: 10.7498/aps.67.20172134
    [15] 张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维. 基于磁共振的水下非接触式电能传输系统建模与损耗分析. 物理学报, doi: 10.7498/aps.65.048401
    [16] 党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍. 亮孤子在宇称时间对称波导中的传输和控制. 物理学报, doi: 10.7498/aps.64.064211
    [17] 柴争义, 王秉, 李亚伦. 拟态物理学优化的认知无线电网络频谱分配. 物理学报, doi: 10.7498/aps.63.228802
    [18] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统. 物理学报, doi: 10.7498/aps.62.058503
    [19] 陈增军, 宁西京. 非厄米哈密顿量的物理意义. 物理学报, doi: 10.7498/aps.52.2683
    [20] 赖云忠, 梁九卿. 哈密顿算符是SU(1,1)和SU(2)算子含时线性组合量子系统的时间演变及厄密不变量. 物理学报, doi: 10.7498/aps.45.738
计量
  • 文章访问数:  128
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-07

/

返回文章
返回