搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向类脑计算的低电压忆阻器研究进展

贡以纯 明建宇 吴思齐 仪明东 解令海 黄维 凌海峰

引用本文:
Citation:

面向类脑计算的低电压忆阻器研究进展

贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰
cstr: 32037.14.aps.73.20241022

Recent progress of low-voltage memristor for neuromorphic computing

Gong Yi-Chun, Ming Jian-Yu, Wu Si-Qi, Yi Ming-Dong, Xie Ling-Hai, Huang Wei, Ling Hai-Feng
cstr: 32037.14.aps.73.20241022
PDF
HTML
导出引用
  • 忆阻器是非易失性存储器和神经形态计算的优秀候选者. 电压调制作为其关键性能策略, 是获得纳瓦超低功耗、飞焦超低能耗工作的基础, 有助于打破功耗墙、突破后摩尔时代算力瓶颈. 然而基于高密度集成忆阻器阵列的类脑计算架构还需重点考虑开/关比、高速响应、保留时间和耐久性等器件稳定性参数. 因此如何在低电场下实现离子/电子的高效、稳定驱动, 构筑电压低于1 V的低电压、高性能忆阻器成为了当前实现类脑计算能效系统的关键问题. 本文综述了近年来面向类脑计算的低电压忆阻器的研究进展. 首先, 探讨了低电压忆阻器的机制, 包括电化学金属化机制和价态变化机制. 在此基础上, 系统总结了各材料体系在低电压忆阻器中的优势, 涵盖了过渡金属氧化物、二维材料和有机材料等. 进一步围绕材料工程、掺杂工程、界面工程提出了相应的低电压忆阻器实现策略, 最后, 展望了基于低电压忆阻器的类脑功能模拟及神经形态计算应用, 并对现存问题和未来研究方向进行了讨论.
    Memristors stand out as the most promising candidates for non-volatile memory and neuromorphic computing due to their unique properties. A crucial strategy for optimizing memristor performance lies in voltage modulation, which is essential for achieving ultra-low power consumption in the nanowatt range and ultra-low energy operation below the femtojoule level. This capability is pivotal in overcoming the power consumption barrier and addressing the computational bottlenecks anticipated in the post-Moore era. However, for brain-inspired computing architectures utilizing high-density integrated memristor arrays, key device stability parameters must be considered, including the on/off ratio, high-speed response, retention time, and durability. Achieving efficient and stable ion/electron transport under low electric fields to develop low-voltage, high-performance memristors operating below 1 V is critical for advancing energy-efficient neuromorphic computing systems. This review provides a comprehensive overview of recent advancements in low-voltage memristors for neuromorphic computing. Firstly, it elucidates the mechanisms that control the operation of low-voltage memristor, such as electrochemical metallization and anion migration. These mechanisms play a pivotal role in determining the overall performance and reliability of memristors under low-voltage conditions. Secondly, the review then systematically examines the advantages of various material systems employed in low-voltage memristors, including transition metal oxides, two-dimensional materials, and organic materials. Each material system has distinct benefits, such as low ion activation energy, and appropriate defect density, which are critical for optimizing memristor performance at low operating voltages. Thirdly, the review consolidates the strategies for implementing low-voltage memristors through advanced materials engineering, doping engineering, and interface engineering. Moreover, the potential applications of low-voltage memristors in neuromorphic function simulation and neuromorphic computing are discussed. Finally, the current problems of low-voltage memristors are discussed, especially the stability issues and limited application scenarios. Future research directions are proposed, focusing on exploring new material systems and physical mechanisms that could be integrated into device design to achieve higher-performance low-voltage memristors.
      通信作者: 凌海峰, iamhfling@njupt.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0717900)、国家自然科学基金(批准号: 62288102, 22275098, 62471251)和江苏省研究生科研与实践创新计划项目(批准号: 46030CX21252)资助的课题.
      Corresponding author: Ling Hai-Feng, iamhfling@njupt.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0717900), the National Natural Science Foundation of China (Grant Nos. 62288102, 22275098, 62471251), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. 46030CX21252).
    [1]

    Di Ventra M, Pershin Y V 2013 Nat. Phys. 9 200Google Scholar

    [2]

    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R 2013 Nat. Commun. 4 1771Google Scholar

    [3]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [4]

    Zhang X M, Zhuo Y, Luo Q, Wu Z H, Midya R, Wang Z R, Song W H, Wang R, Upadhyay N K, Fang Y L, Kiani F, Rao M Y, Yang Y, Xia Q F, Liu Q, Liu M, Yang J J 2020 Nat. Commun. 11 51Google Scholar

    [5]

    Li X Y, Tang J S, Zhang Q T, Gao B, Yang J J, Song S, Wu W, Zhang W Q, Yao P, Deng N, Deng L, Xie Y, Qian H, Wu H Q 2020 Nat. Nanotechnol. 15 776Google Scholar

    [6]

    Choi S, Yang J, Wang G 2020 Adv. Mater. 32 2004659Google Scholar

    [7]

    He K, Liu Y Q, Yu J C, Guo X T, Wang M, Zhang L D, Wan C J, Wang T, Zhou C J, Chen X D 2022 ACS Nano 16 9691Google Scholar

    [8]

    Kim N, Oh J, Kim S, Cha J H, Choi J, Im S G, Choi S Y, Jang B C 2024 Adv. Funct. Mater. 34 2305136Google Scholar

    [9]

    Yang J Q, Zhang F, Xiao H M, Wang Z P, Xie P, Feng Z H, Wang J J, Mao J Y, Zhou Y, Han S T 2022 ACS Nano 16 21324Google Scholar

    [10]

    Li B, Wei W, Luo L, Gao M, Yu Z G, Li S, Ang K W, Zhu C 2022 Adv. Electron. Mater. 8 2200089Google Scholar

    [11]

    Zhao H, Liu Z W, Tang J S, Gao B, Qin Q, Li J M, Zhou Y, Yao P, Xi Y, Lin Y D, Qian H, Wu H Q 2023 Nat. Commun. 14 2276Google Scholar

    [12]

    Cai B Q, Huang Y, Tang L Z, Wang T Y, Wang C, Sun Q Q, Zhang D W, Chen L 2023 Adv. Funct. Mater. 33 2306272Google Scholar

    [13]

    Duan H, Cheng S Q, Qin L, Zhang X L, Xie B Y, Zhang Y, Jie W J 2022 J. Phys. Chem. Lett. 13 7130Google Scholar

    [14]

    Eberhardt D T 1989 International 1989 Joint Conference on Neural Networks Washington, DC, USA, June 18-22, 1989 pp183-190

    [15]

    Calimera A, Macii E, Poncino M 2013 Funct Neurol. 28 191

    [16]

    Andreou A G, Meitzler R C, Strohbehn K, Boahen K A 1995 Neural Networks 8 1323Google Scholar

    [17]

    Song M K, Kang J H, Zhang X Y, Ji W, Ascoli A, Messaris I, Demirkol A S, Dong B, Aggarwal S, Wan W 2023 ACS Nano 17 11994Google Scholar

    [18]

    Park Y J, Lee J S 2022 J. Phys. Chem. Lett. 13 5638Google Scholar

    [19]

    Wang J J, Qian F S, Huang S M, Lv Z Y, Wang Y, Xing X C, Chen M, Han S T, Zhou Y 2020 Adv. Intell. Syst. 3 2000180Google Scholar

    [20]

    Hirose Y, Hirose H 1976 J. Appl. Phys. Vol. 47 2767Google Scholar

    [21]

    Waser R, Aono M 2007 Nat. Mater. 6 833Google Scholar

    [22]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [23]

    Vasilopoulou M, Mohd Yusoff A R b, Chai Y, Kourtis M A, Matsushima T, Gasparini N, Du R, Gao F, Nazeeruddin M K, Anthopoulos T D, Noh Y Y 2023 Nat. Electron. 6 949Google Scholar

    [24]

    Cheng P, Sun K, Hu Y H 2016 Nano Lett. 16 572Google Scholar

    [25]

    Lin W P, Liu S J, Gong T, Zhao Q, Huang W 2014 Adv. Mater. 26 570Google Scholar

    [26]

    Kumar S, Wang X, Strachan J P, Yang Y, Lu W D 2022 Nat. Rev. Mater. 7 575Google Scholar

    [27]

    Moon J, Ma W, Shin J H, Cai F, Du C, Lee S H, Lu W D 2019 Nat. Electron. 2 480Google Scholar

    [28]

    West W C, Sieradzki K, Kardynal B, Kozicki M N 1998 J. Electrochem. Soc. 145 2971Google Scholar

    [29]

    Yang Y C, Gao P, Li L, Pan X Q, Tappertzhofen S, Choi S, Waser R, Valov I, Lu W D 2014 Nat. Commun. 5 4232Google Scholar

    [30]

    Zhu J D, Zhang T, Yang Y Y, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [31]

    Xu W T, Cho H C, Kim Y H, Kim Y T, Wolf C, Park C G, Lee T o 2016 Adv. Mater. 28 5916Google Scholar

    [32]

    Xiao Z G, Huang J S 2016 Adv. Electron. Mater. 2 1600100Google Scholar

    [33]

    Sawa A 2008 Mater. Today 11 28Google Scholar

    [34]

    Rao M Y, Tang H, Wu J B, Song W H, Zhang M, Yin W B, Zhuo Y, Kiani F, Chen B, Jiang X Q, Liu H F, Chen H Y, Midya R, Ye F, Jiang H, Wang Z R, Wu M C, Hu M, Wang H, Xia Q F, Ge N, Li J, Yang J J 2023 Nature 615 823Google Scholar

    [35]

    Song W H, Rao M Y, Li Y N, Li C, Zhuo Y, Cai F X, Wu M C, Yin W B, Li Z Z, Wei Q 2024 Science 383 903Google Scholar

    [36]

    Yang J J, Strukov D B, Stewart D R 2012 Nat. Nanotechnol. 8 13Google Scholar

    [37]

    Li Z N, Tian B Y, Xue K H, Wang B, Xu M, Lu H, Sun H J, Miao X S 2019 IEEE Electron Device Lett. 40 1068Google Scholar

    [38]

    Carlos E, Deuermeier J, Branquinho R, Gaspar C, Martins R, Kiazadeh A, Fortunato E 2021 J. Mater. Chem. C 9 3911Google Scholar

    [39]

    Bian L Y, Xie M, Chong H, Zhang Z W, Liu G Y, Han Q S, Ge J Y, Liu Z, Lei Y, Zhang G W, Xie L H 2022 Chin. J. Chem. 40 2451Google Scholar

    [40]

    Yue J L, Zou L Q, Bai N, Zhu C Q, Yi Y H, Xue F, Sun H J, Hu S, Cheng W M, He Q 2024 Small Methods n/a 2301657

    [41]

    Saleem A, Kumar D, Singh A, Rajasekaran S, Tseng T Y 2022 Adv. Mater. Technol. 7 2101208Google Scholar

    [42]

    Yoon J H, Zhang J M, Ren X C, Wang Z R, Wu H Q, Li Z Y, Barnell M, Wu Q, Lauhon L J, Xia Q F 2017 Adv. Funct. Mater. 27 1702010Google Scholar

    [43]

    Li Y, Chu J X, Duan W J, Cai G S, Fan X H, Wang X Z, Wang G, Pei Y L 2018 ACS Appl. Mater. Interfaces 10 24598Google Scholar

    [44]

    She Y, Wang F, Zhao X Y, Zhang Z Z, Li C, Pan H G, Hu K, Song Z T, Zhang K L 2021 IEEE Trans. Electron Devices 68 1950Google Scholar

    [45]

    Yuan R, Tiw P J, Cai L, Yang Z Y, Liu C, Zhang T, Ge C, Huang R, Yang Y C 2023 Nat. Commun. 14 3695Google Scholar

    [46]

    Yang K, Wang Y H, Tiw P J, Wang C M, Zou X L, Yuan R, Liu C, Li G, Ge C, Wu S, Zhang T, Huang R, Yang Y C 2024 Nat. Commun. 15 1693Google Scholar

    [47]

    Fu Y Y, Zhou Y, Huang X D, Dong B Y, Zhuge F W, Li Y, He Y H, Chai Y, Miao X S 2022 Adv. Funct. Mater. 32 2111996Google Scholar

    [48]

    Liu Z H, Cheng P P, Kang R Y, Zhou J, Zhao X, Zhao J, Zuo Z Y 2023 Adv. Mater. Interfaces 10 2201513Google Scholar

    [49]

    Sun K X, Wang Q R, Zhou L, Wang J J, Chang J J, Guo R, Tay B K, Yan X B 2023 Sci. China Mater. 66 2013Google Scholar

    [50]

    Berruet M, Pérez-Martínez J C, Romero B, Gonzales C, Al-Mayouf A M, Guerrero A, Bisquert J 2022 ACS Energy Lett. 7 1214Google Scholar

    [51]

    Huang F C, Ge S P, Wei R L, He J Q, Ma X L, Tao J, Lu Q C, Mo X M, Wang C F, Pan C F 2022 ACS Appl. Mater. Interfaces 14 43474Google Scholar

    [52]

    Kim S G, Van Le Q, Han J S, Kim H, Choi M J, Lee S A, Kim T L, Kim S B, Kim S Y, Jang H W 2019 Adv. Funct. Mater. 29 1906686Google Scholar

    [53]

    Abbas G, Hassan M, Khan Q, Wang H F, Zhou G G, Zubair M, Xu X R, Peng Z C 2022 Adv. Electron. Mater. 8 2101412Google Scholar

    [54]

    John R A, Shah N, Vishwanath S K, Ng S E, Febriansyah B, Jagadeeswararao M, Chang C H, Basu A, Mathews N 2021 Nat. Commun. 12 3681Google Scholar

    [55]

    Cheng X F, Qian W H, Wang J, Yu C, He J H, Li H, Xu Q F, Chen D Y, Li N J, Lu J M 2019 Small 15 1905731Google Scholar

    [56]

    Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S 2020 ACS Appl. Mater. Interfaces 12 23094Google Scholar

    [57]

    Ren Y Y, Bu X B, Wang M, Gong Y, Wang J J, Yang Y Y, Li G J, Zhang M, Zhou Y, Han S T 2022 Nat. Commun. 13 5585Google Scholar

    [58]

    Lao J, Xu W, Jiang C L, Zhong N, Tian B B, Lin H C, Luo C H, Travas-sejdic J, Peng H, Duan C G 2021 J. Mater. Chem. C 9 5706Google Scholar

    [59]

    Im I H, Baek J H, Kim S J, Kim J, Park S H, Kim J Y, Yang J J, Jang H W 2023 Adv. Mater. 36 2307334Google Scholar

    [60]

    Li J X, Yang Y C, Yin M H, Sun X H, Li L D, Huang R 2020 Mater. Horiz. 7 71Google Scholar

    [61]

    Mishra D, Mokurala K, Kumar A, Seo S G, Jo H B, Jin S H 2022 Adv. Funct. Mater. 33 2211022Google Scholar

    [62]

    Su T K, Cheng W K, Chen C Y, Wang W C, Chuang Y T, Tan G H, Lin H C, Hou C H, Liu C M, Chang Y C, Shyue J J, Wu K C, Lin H W 2022 ACS Nano 16 12979Google Scholar

    [63]

    Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [64]

    Yin L, Cheng R Q, Wen Y, Zhai B X, Jiang J, Wang H, Liu C S, He J 2022 Adv. Mater. 34 2108313Google Scholar

    [65]

    Wang Y S, Liu H W, Liu P, Lu W L, Cui J Q, Chen X Y, Lu M 2022 J. Alloys Compd. 909 164775Google Scholar

    [66]

    Wu X H, Ge R J, Chen P A, Chou H, Zhang Z P, Zhang Y F, Banerjee S, Chiang M H, Lee J C, Akinwande D 2019 Adv. Mater. 31 1806790Google Scholar

    [67]

    Liu X L, Zhang C, Li E L, Gao C F, Wang R X, Liu Y, Liu F C, Shi W, Yuan Y H, Sun J, Lin Y F, Chu J H, Li W W 2024 Adv. Funct. Mater. 34 2309642Google Scholar

    [68]

    Chen H H, Kang Y, Pu D, Tian M, Wan N, Xu Y, Yu B, Jie W J, Zhao Y D 2023 Nanoscale 15 4309Google Scholar

    [69]

    Bertolazzi S, Bondavalli P, Roche S, San T, Choi S Y, Colombo L, Samorì P, Bonaccorso F 2019 Adv. Mater. 31 1806663Google Scholar

    [70]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [71]

    Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y 2012 Nat. Commun. 3 1011Google Scholar

    [72]

    Gosai J, Patel M, Liu L, Lokhandwala A, Thakkar P, Chee M Y, Jain M, Lew W S, Chaudhari N, Solanki A 2024 ACS Appl. Mater. Interfaces 16 17821Google Scholar

    [73]

    Lu X F, Zhang Y S, Wang N Z, Luo S, Peng K L, Wang L, Chen H, Gao W B, Chen X H, Bao Y, Liang G c, Loh K P 2021 Nano Lett. 21 8800Google Scholar

    [74]

    Sun Y J, Zhang R J, Teng C J, Tan J Y, Zhang Z H, Li S N, Wang J W, Zhao S L, Chen W J, Liu B L, Cheng H M 2023 Mater. Today 66 9Google Scholar

    [75]

    Zhao H, Dong Z P, Tian H, DiMarzi D, Han M G, Zhang L H, Yan X D, Liu F X, Shen L, Han S J 2017 Adv. Mater. 29 1703232Google Scholar

    [76]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar

    [77]

    Wang J, Liang M H, Fang Y, Qiu T F, Zhang J, Zhi L J 2012 Adv. Mater. 24 2874Google Scholar

    [78]

    Sun Q J, Kim D H, Park S S, Lee N Y, Zhang Y, Lee J H, Cho K, Cho J H 2014 Adv. Mater. 26 4735Google Scholar

    [79]

    Wang K Y, Li L T, Zhao R J, Zhao J H, Zhou Z Y, Wang J J, Wang H, Tang B K, Lu C, Lou J Z, Chen J S, Yan X B 2020 Adv. Electron. Mater. 6 1901342Google Scholar

    [80]

    Li S F, Pam M E, Li Y S, Chen L, Chien Y C, Fong X Y, Chi D Z, Ang K W 2022 Adv. Mater. 34 2103376Google Scholar

    [81]

    Feng X W, Li Y D, Wang L, Chen S, Yu Z G, Tan W C, Macadam N, Hu G H, Huang L, Chen L, Gong X, Chi D Z, Hasan T, Thean A V Y, Zhang Y W, Ang K W 2019 Adv. Electron. Mater. 5 1900740Google Scholar

    [82]

    Shi Y Y, Liang X H, Yuan B, Chen V, Li H T, Hui F, Yu Z C W, Yuan F, Pop E, Wong H S P, Lanza M 2018 Nat. Electron. 1 458Google Scholar

    [83]

    Ding G L, Chen R S, Xie P, Yang B D, Shang G, Liu Y, Gao L L, Mo W A, Zhou K, Han S T, Zhou Y 2022 Small 18 2200185Google Scholar

    [84]

    Nikam R D, Rajput K G, Hwang H 2021 Small 17 2006760Google Scholar

    [85]

    Ling S T, Zhang C, Ma C L, Li Y, Zhang Q C 2022 Adv. Funct. Mater. 33 2208320Google Scholar

    [86]

    Wang K, Dai S L, Zhao Y W, Wang Y, Liu C, Huang J 2019 Small 15 1900010Google Scholar

    [87]

    Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P 2019 Small 15 1900107Google Scholar

    [88]

    Sokolov A, Ali M, Li H, Jeon Y R, Ko M J, Choi C 2020 Adv. Electron. Mater. 7 2000866Google Scholar

    [89]

    He N, Zhang Q Q, Tao L Y, Chen X T, Qin Q, Liu X Y, Lian X J, Wan X, Hu E, Xu J G, Xu F, Tong Y 2021 IEEE Electron Device Lett. 42 319Google Scholar

    [90]

    Wang T Y, Meng J L, Zhou X F, Liu Y, He Z Y, Han Q, Li Q X, Yu J J, Li Z H, Liu Y K, Zhu H, Sun Q Q, Zhang D W, Chen P N, Peng H S, Chen L 2022 Nat. Commun. 13 7432Google Scholar

    [91]

    Ahmed T, Kuriakose S, Tawfik S A, Mayes E L, Mazumder A, Balendhran S, Spencer M J, Akinwande D, Bhaskaran M, Sriram S, Walia S 2022 Adv. Funct. Mater. 32 2107068Google Scholar

    [92]

    Ouyang J Y, Chu C W, Szmanda C R, Ma L P, Yang Y 2004 Nat. Mater. 3 918Google Scholar

    [93]

    Hota M K, Bera M K, Kundu B, Kundu S C, Maiti C K 2012 Adv. Funct. Mater. 22 4493Google Scholar

    [94]

    Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F, Guo D 2013 J. Mater. Chem. C 1 5292Google Scholar

    [95]

    Li J Y, Qian Y Z, Li W, Yu S C, Ke Y X, Qian H W, Lin Y H, Hou C H, Shyue J J, Zhou J, Chen Y, Xu J P, Zhu J T, Yi M D, Huang W 2023 Adv. Mater. 35 2209728Google Scholar

    [96]

    Luo X L, Ming J Y, Gao J C, Zhuang J W, Fu J W, Ren Z H, Ling H F, Xie L H 2022 Front. Neurosci. 16Google Scholar

    [97]

    Wang L, Qu J X, Li J Z, Wen D Z 2023 Adv. Mater. Technol. 8 2201540Google Scholar

    [98]

    Wang L, Yang J, Zhang X F, Wen D Z 2023 Nanomaterials 13 3021Google Scholar

    [99]

    Li H X, Li Q X, Li F Z, Liu J P, Gong G D, Zhang Y Q, Leng Y B, Sun T, Zhou Y, Han S T 2023 Adv. Mater. 36 2308153Google Scholar

    [100]

    Shaikh M T A S, Nguyen T H V, Jeon H J, Prasad C V, Kim K J, Jo E S, Kim S, Rim Y S 2024 Adv. Sci. 11 2306206Google Scholar

    [101]

    Wang Z Y, Wang L Y, Wu Y M, Bian L Y, Nagai M, Jv R L, Xie L H, Ling H F, Li Q, Bian H Y, Yi M D, Shi N E, Liu X G, Huang W 2021 Adv. Mater. 33 2104370Google Scholar

    [102]

    Zhou J, Li W, Chen Y, Lin Y H, Yi M D, Li J Y, Qian Y Z, Guo Y, Cao K Y, Xie L H, Ling H F, Ren Z J, Xu J P, Zhu J T, Yan S K, Huang W 2020 Adv. Mater. 33 2006201Google Scholar

    [103]

    Yan X B, Li X Y, Zhou Z Y, Zhao J H, Wang H, Wang J J, Zhang L, Ren D L, Zhang X, Chen J S 2019 ACS Appl. Mater. Interfaces 11 18654Google Scholar

    [104]

    Lin Y, Xu H Y, Wang Z Q, Cong T, Liu W Z, Ma H L, Liu Y C 2017 Appl. Phys. Lett. 110 193503Google Scholar

    [105]

    Liu S Z, He Z L, Zhang B, Zhong X L, Guo B J, Chen W L, Duan H X, Tong Y, He H D, Chen Y, Liu G 2023 Adv. Sci. 10 2305075Google Scholar

    [106]

    Zhou G D, Li J, Song Q L, Wang L D, Ren Z J, Sun B, Hu X F, Wang W H, Xu G B, Chen X D, Cheng L, Zhou F C, Duan S K 2023 Nat. Commun. 14 8489Google Scholar

    [107]

    Wang R, Wang S S, Xin Y H, Cao Y X, Liang Y, Peng Y Q, Feng J, Li Y, Lv L, Ma X H, Wang H, Hao Y 2023 Small Sci. 3 2200082Google Scholar

    [108]

    Oh J, Yang S Y, Kim S, Lee C, Cha J H, Jang B C, Im S G, Choi S Y 2023 Mater. Horiz. 10 2035Google Scholar

    [109]

    Zhang T, Wang L Y, Ding W W, Zhu Y F, Qian H W, Zhou J, Chen Y, Li J Y, Li W, Huang L Y, Song C Y, Yi M D, Huang W 2023 Adv. Mater. 35 2302863Google Scholar

    [110]

    Wang Y L, Su J, Ouyang G Y, Geng S Y, Ren M C, Pan W L, Bian J, Cao M H 2024 Adv. Funct. Mater. 34 2316397Google Scholar

    [111]

    Zhu X J, Wang Q W, Lu W D 2020 Nat. Commun. 11 2439Google Scholar

    [112]

    Zhu X J, Lee J H, Lu W D 2017 Adv. Mater. 29 1700527Google Scholar

    [113]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [114]

    Liu Z H, Cheng P P, Li Y F, Kang R Y, Zhou J, Zhao J, Zuo Z Y 2022 Mater. Chem. Phys. 288 126393Google Scholar

    [115]

    Bala A, Sen A, Shim J, Gandla S, Kim S 2023 ACS Nano 17 13784Google Scholar

    [116]

    Chaudhary M, Yang T Y, Chen C T, Lai P C, Hsu Y C, Peng Y R, Kumar A, Lee C H, Chueh Y L 2023 Adv. Funct. Mater. 33 2303697Google Scholar

    [117]

    Tang B S, Veluri H, Li Y D, Yu Z G, Waqar M, Leong J F, Sivan M, Zamburg E, Zhang Y W, Wang J, Thean A V Y 2022 Nat. Commun. 13 3037Google Scholar

    [118]

    Wang X J, Zhou Z, Ban C Y, Zhang Z P, Ju S, Huang X, Mao H W, Chang Q, Yin Y H, Song M Y, Cheng S, Ding Y M, Liu Z D, Ju R L, Xie L L, Miao F, Liu J Q, Huang W 2020 Adv. Sci. 7 1902864Google Scholar

    [119]

    Chen J, Wang X J, Lu H, Liu Z D, Xiu F, Ban C Y, Zhou Z, Song M Y, Ju S, Chang Q, Liu J Q, Huang W 2018 Small Methods 2 1800040Google Scholar

    [120]

    Li Y J, Tang J S, Gao B, Sun W, Hua Q L, Zhang W B, Li X Y, Zhang W R, Qian H, Wu H Q 2020 Adv. Sci. 7 2002251Google Scholar

    [121]

    Choi S H, Park S O, Seo S, Choi S 2022 Sci. Adv. 8 eabj7866Google Scholar

    [122]

    Xu W T, Min S Y, Hwang H, Lee T W 2016 Sci. Adv. 2 e1501326Google Scholar

    [123]

    Zhao Z, Abdelsamie A, Guo R, Shi S, Zhao J H, Lin W N, Sun K X, Wang J J, Wang J L, Yan X B, Chen J S 2021 Nano Res. 15 2682Google Scholar

    [124]

    Lv Z Y, Zhu S R, Wang Y, Ren Y Y, Luo M T, Wang H N, Zhang G H, Zhai Y B, Zhao S L, Zhou Y, Jiang M H, Leng Y B, Han S T 2024 Adv. Mater. 36 2405145Google Scholar

    [125]

    Lv Z Y, Xing X C, Huang S M, Wang Y, Chen Z H, Gong Y, Zhou Y, Han S T 2021 Matter 4 1702Google Scholar

    [126]

    Fu T, Liu X M, Gao H Y, Ward J E, Liu X R, Yin B, Wang Z R, Zhuo Y, Walker D J, Joshua Yang J, Chen J H, Lovley D R, Yao J 2020 Nat. Commun. 11 1861Google Scholar

    [127]

    Fu T, Liu X M, Fu S, Woodard T, Gao H Y, Lovley D R, Yao J 2021 Nat. Commun. 12 3351Google Scholar

    [128]

    Matsukatova A N, Vdovichenko A Y, Patsaev T D, Forsh P A, Kashkarov P K, Demin V A, Emelyanov A V 2022 Nano Res. 16 3207Google Scholar

    [129]

    Yao Z Z, Pan L, Liu L Z, Zhang J D, Lin Q J, Ye Y X, Zhang Z J, Xiang S C, Chen B L 2019 Sci. Adv. 5 eaaw4515Google Scholar

    [130]

    Zhang B, Chen W L, Zeng J M, Fan F, Gu J W, Chen X H, Yan L, Xie G J, Liu S Z, Yan Q, Baik S J, Zhang Z G, Chen W H, Hou J, El-Khouly M E, Zhang Z, Liu G, Chen Y 2021 Nat. Commun. 12 1984Google Scholar

    [131]

    Liu S Z, Zeng J M, Wu Z X, Hu H, Xu A, Huang X H, Chen W L, Chen Q L, Yu Z, Zhao Y Y 2023 Nat. Commun. 14 7655Google Scholar

    [132]

    Liu Y, Zhou X F, Yan H, Shi X, Chen K, Zhou J Y, Meng J L, Wang T Y, Ai Y, Wu J X 2023 Adv. Mater. 35 2301321Google Scholar

    [133]

    Yan X B, Zhao Q L, Chen A P, Zhao J H, Zhou Z Y, Wang J J, Wang H, Zhang L, Li X Y, Xiao Z, Wang K Y, Qin C Y, Wang G, Pei Y F, Li H, Ren D L, Chen J S, Liu Q 2019 Small 15 1901423Google Scholar

    [134]

    Song Y G, Suh J M, Park J Y, Kim J E, Chun S Y, Kwon J U, Lee H, Jang H W, Kim S, Kang C Y 2021 Adv. Sci. 9 2103484Google Scholar

    [135]

    Liu Y X, Ye C, Chang K C, Li L, Jiang B, Xia C, Liu L, Zhang X, Liu X Y, Xia T 2020 Small 16 2004619Google Scholar

    [136]

    Kim M K, Lee J S 2018 ACS Appl. Mater. Interfaces 10 10280Google Scholar

    [137]

    Wang K Y, Chen J S, Yan X B 2021 Nano Energy 79 105453Google Scholar

    [138]

    Li Y S, Xiong Y, Zhai B X, Yin L, Yu Y L, Wang H, He J 2024 Sci. Adv. 10 eadk9474Google Scholar

    [139]

    Jiang Y, Wang D C, Lin N, Shi S H, Zhang Y, Wang S C, Chen X, Chen H G, Lin Y A, Loong K C 2023 Adv. Sci. 10 2301323Google Scholar

    [140]

    Yan X B, Zhao J H, Liu S, Zhou Z Y, Liu Q, Chen J S, Liu X Y 2017 Adv. Funct. Mater. 28 1705320Google Scholar

    [141]

    Tang L Z, Wang J A, Huang Y, Wang H S, Wang C, Yang Y M 2024 J. Mater. Chem. C 12 3622Google Scholar

    [142]

    Wang T, Wang M, Wang J W, Yang L, Ren X Y, Song G, Chen S S, Yuan Y H, Liu R Q, Pan L, Li Z, Leow W R, Luo Y F, Ji S B, Cui Z Q, He K, Zhang F L, Lv F T, Tian Y Y, Cai K Y, Yang B W, Niu J Y, Zou H C, Liu S R, Xu G L, Fan X, Hu B H, Loh X J, Wang L H, Chen X D 2022 Nat. Electron. 5 586Google Scholar

    [143]

    Zhang Y C, Liu L, Tu B, Cui B, Guo J H, Zhao X, Wang J Y, Yan Y 2023 Nat. Commun. 14 247Google Scholar

    [144]

    Zhang G H, Xiong Z Y, Gong Y, Zhu Z X, Lv Z Y, Wang Y, Yang J Q, Xing X C, Wang Z P, Qin J R, Zhou Y, Han S T 2022 Adv. Funct. Mater. 32 2204721Google Scholar

    [145]

    Liu P S, Hui F, Aguirre F, Saiz F, Tian L L, Han T T, Zhang Z J, Miranda E, Lanza M 2022 Adv. Mater. 34 2201197Google Scholar

    [146]

    Zhang Y, Han F, Fan S, Zhang Y P 2021 ACS Biomater. Sci. Eng. 7 3459Google Scholar

    [147]

    Zhao M M, Wang S S, Li D W, Wang R, Li F F, Wu M Q, Liang K, Ren H H, Zheng X R, Guo C C, Ma X H, Zhu B W, Wang H, Hao Y 2022 Adv. Electron. Mater. 8 2101139Google Scholar

    [148]

    Xia Q, Qin Y X, Qiu P L 2022 Adv. Electron. Mater. 8 2200435Google Scholar

    [149]

    Mullani N B, Kumbhar D D, Lee D H, Kwon M J, Cho S y, Oh N, Kim E T, Dongale T D, Nam S Y, Park J H 2023 Adv. Funct. Mater. 33 2300343Google Scholar

    [150]

    Han J S, Le Q V, Choi J, Hong K, Moon C W, Kim T L, Kim H, Kim S Y, Jang H W 2018 Adv. Funct. Mater. 28 1870029Google Scholar

    [151]

    Ye H B, Sun B, Wang Z Y, Liu Z Y, Zhang X N, Tan X H, Shi T L, Tang Z R, Liao G L 2020 J. Mater. Chem. C 8 14155Google Scholar

    [152]

    Liu J Q, Gong J D, Wei H H, Li Y M, Wu H X, Jiang C P, Li Y L, Xu W T 2022 Nat. Commun. 13 7427Google Scholar

    [153]

    Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A 2021 ACS Energy Lett. 6 1087Google Scholar

    [154]

    John R A, Demirağ Y, Shynkarenko Y, Berezovska Y, Ohannessian N, Payvand M, Zeng P, Bodnarchuk M I, Krumeich F, Kara G 2022 Nat. Commun. 13 2074Google Scholar

    [155]

    Murdoch B J, Raeber T J, Zhao Z C, McKenzie D R, McCulloch D G, Partridge J G 2019 Appl. Phys. Lett. 114 2207928Google Scholar

    [156]

    Li M J, Liu H F, Zhao R Y, Yang F S, Chen M R, Zhuo Y, Zhou C W, Wang H, Lin Y F, Yang J J 2023 Nat. Electron. 6 491Google Scholar

    [157]

    Guo J, Wang L Y, Liu Y, Zhao Z P, Zhu E B, Lin Z Y, Wang P Q, Jia C C, Yang S X, Lee S J, Huang W, Huang Y, Duan X F 2020 Matter 2 965Google Scholar

    [158]

    Mao J Y, Wu S, Ding G L, Wang Z P, Qian F S, Yang J Q, Zhou Y, Han S T 2022 Small 18 2106253Google Scholar

    [159]

    Sun L F, Zhang Y S, Han G, Hwang G, Jiang J B, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H J 2019 Nat. Commun. 10 3161Google Scholar

    [160]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130Google Scholar

    [161]

    Sun Y L, Ding Y T, Xie D 2021 Adv. Funct. Mater. 31 2105625Google Scholar

    [162]

    Khot A C, Nirmal K A, Dongale T D, Kim T G 2024 Small 20 2400791Google Scholar

    [163]

    Bean B P 2007 Nat. Rev. Neurosci. 8 451Google Scholar

    [164]

    Wang Y, Gong Y, Huang S M, Xing X C, Lv Z Y, Wang J J, Yang J Q, Zhang G H, Zhou Y, Han S T 2021 Nat. Commun. 12 5979Google Scholar

    [165]

    Wang J J, Lv Z Y, Xing X C, Li X G, Wang Y, Chen M, Pang G J, Qian F S, Zhou Y, Han S T 2020 Adv. Funct. Mater. 30 1909114Google Scholar

    [166]

    Zhong Y N, Tang J S, Li X Y, Gao B, Qian H, Wu H Q 2021 Nat. Commun. 12 408Google Scholar

    [167]

    Lamprecht R, LeDoux J 2004 Nat. Rev. Neurosci. 5 45Google Scholar

    [168]

    Wei H H, Shi R C, Sun L, Yu H Y, Gong J D, Liu C, Xu Z P, Ni Y, Xu J L, Xu W T 2021 Nat. Commun. 12 1068Google Scholar

    [169]

    Tan H W, van Dijken S 2023 Nat. Commun. 14 2169Google Scholar

    [170]

    Zhao M R, Gao B, Tang J S, Qian H, Wu H Q 2020 Appl. Phys. Rev. 7 011301Google Scholar

    [171]

    Wang T Y, Meng J L, Rao M Y, He Z Y, Chen L, Zhu H, Sun Q Q, Ding S J, Bao W Z, Zhou P, Zhang D W 2020 Nano Lett. 20 4111Google Scholar

    [172]

    Upadhyay N K, Sun W, Lin P, Joshi S, Midya R, Zhang X M, Wang Z R, Jiang H, Yoon J H, Rao M Y, Chi M F, Xia Q F, Yang J J 2020 Adv. Electron. Mater. 6 1901411Google Scholar

    [173]

    Wong H S P, Raoux S, Kim S, Liang J, Reifenberg J P, Rajendran B, Asheghi M, Goodson K E 2010 P. IEEE 98 2201Google Scholar

    [174]

    Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthélémy A, Grollier J 2012 Nat. Mater. 11 860Google Scholar

    [175]

    Jung S, Lee H, Myung S, Kim H, Yoon S K, Kwon S W, Ju Y, Kim M, Yi W, Han S, Kwon B, Seo B, Lee K, Koh G H, Lee K, Song Y, Choi C, Ham D, Kim S J 2022 Nature 601 211Google Scholar

    [176]

    Menzel S, Waters M, Marchewka A, Böttger U, Dittmann R, Waser R 2011 Adv. Funct. Mater. 21 4487Google Scholar

    [177]

    Ling H F, Tan K M, Fang Q Y, Xu X S, Chen H, Li W W, Liu Y F, Wang L Y, Yi M D, Huang R, Qian Y, Xie L H, Huang W 2017 Adv. Electron. Mater. 3 1600416Google Scholar

    [178]

    Pei Y F, Li Z Q, Li B, Zhao Y, He H, Yan L, Li X Y, Wang J J, Zhao Z, Sun Y, Zhou Z Y, Zhao J H, Guo R, Chen J S, Yan X B 2022 Adv. Funct. Mater. 32 2203454Google Scholar

    [179]

    Han J Q, Shan X Y, Lin Y, Tao Y, Zhao X N, Wang Z Q, Xu H Y, Liu Y C 2023 Small 19 2207928Google Scholar

    [180]

    Hou W, Azizimanesh A, Dey A, Yang Y, Wang W, Shao C, Wu H, Askari H, Singh S, Wu S M 2024 Nat. Electron. 7 8Google Scholar

    [181]

    Yin J, Zeng F, Wan Q, Li F, Sun Y M, Hu Y D, Liu J L, Li G Q, Pan F 2018 Adv. Funct. Mater. 28 1706927Google Scholar

    [182]

    Xiao T P, Bennett C H, Feinberg B, Agarwal S, Marinella M J 2020 Appl. Phys. Rev. 7 031301Google Scholar

  • 图 1  综述框架示意图[2027]

    Fig. 1.  Schematic of the overview framework[2027].

    图 2  两种典型的忆阻器开关机制 (a) ECM示意图; (b) VCM细丝型示意图; (c) 界面型示意图; (d)双极型开关的典型电流-电压(I-V)特性曲线; (e) 阈值型开关的I-V特性曲线; (f) 模拟类开关的I-V特性曲线

    Fig. 2.  Two typical switching mechanisms of memristors: (a) Schematic diagram of ECM; (b) schematic diagram of filamentary-type VCM; (c) schematic diagram of interfacial-type VCM; (d) typical I-V characteristics of bipolar resistive switching; (e) typical I-V characteristics of threshold switching; (f) typical I-V characteristics of analog switching.

    图 3  (a) HfO2晶胞示意图; (b) 钙钛矿通式晶胞示意图; (c) 闪锌矿晶胞示意图; (d) MoS2层状结构示意图; (e) h-BN结构示意图; (f) PEDOT:PSS分子示意图; (g) MTPP分子示意图

    Fig. 3.  (a) Schematic diagram of HfO2 unit cell; (b) schematic diagram of perovskite unit cell; (c) schematic diagram of sphalerite; (d) schematic diagram of MoS2 layered structure; (e) schematic diagram of h-BN structure; (f) schematic diagram of PEDOT:PSS molecule; (g) schematic diagram of MTPP molecule.

    图 4  (a) 基于材料本征缺陷优化离子传输示意图; (b) SnS的晶体结构示意图; (c) 不同限流下的Ag/SnS/Pt器件的RS特性; (d) SnS薄膜的扫描隧穿电镜图像; (e) dI/dV与SnS样品偏压关系图[73]; (f) Ag/CsPbI3/Ag忆阻器的结构示意图和SEM图像; (g) Ag/CsPbI3/Ag忆阻器I-V特性曲线; (h) 碘元素X射线特征峰的能量色散光谱[111]; (i), (j) Pt/MoS2/Ti忆阻器物理机制示意图; (k) MoS2纳米片尺寸为0.48 μm时的I-V特性曲线; (l) 硫空位扩散势垒随纳米片尺寸变化曲线[117]

    Fig. 4.  (a) Schematic diagram of ion transport optimization based on intrinsic material defects; (b) schematic diagram of SnS crystal structure; (c) resistive switching of Ag/SnS/Pt device with different compliance current; (d) scanning tunneling microscopy image of SnS thin film; (e) relationship of dI/dV versus bias voltage of SnS sample[73]; (f) schematic diagram and SEM image of Ag/CsPbI3/Ag memristor; (g) I-V characteristic curve of Ag/CsPbI3/Ag memristor; (h) energy-dispersive X-ray spectrum of iodine elements core level[111]; (i), (j) schematic diagram of the physical mechanism of Pt/MoS2/Ti memristor; (k) I-V characteristic curve when the size of MoS2 nanosheets is 0.48 μm; (l) curve of the change in sulfur vacancy diffusion barrier with nanosheet size[117].

    图 5  基于本征微纳结构优化离子传输 (a) 基于纳米线结构优化离子传输示意图; (b) Ag/c-YY NW/Ag器件结构示意图; (c) c-YY的化学结构式和开尔文探针力显微镜(KPFM)表面电势分布; (d) 不同限流下Ag/c-YY NW/Ag的阈值开关行为[124]; (e) Ag-SiO2-Pt器件结构下嵌入图案化蛋白质纳米线薄膜的垂直忆阻器结构; (f) 蛋白质纳米线的TEM图像(标尺为100 nm); (g) 在忆阻器中引入蛋白质纳米线促进Ag+的阴极还原过程示意图; (h) 蛋白质纳米线器件在800次I-V连续扫描下的阈值开关行为[126]; (i) 基于高度有序晶体排布的本征微纳结构优化离子传输示意图; (j), (k) PBFCL10薄膜中有序排列的纳米晶体和均匀的离子迁移路径的示意图; (l) C-AFM表征下PBFCL10薄膜表面的电流分布; (m) Ag/PBFCL10/Au典型I-V特性曲线[131]

    Fig. 5.  Optimization of ion transport-based on intrinsic nanostructure: (a) Schematic diagram of ion transport optimization based on intrinsic nanostructure; (b) schematic diagram of Ag/c-YY NW/Ag device structure; (c) chemical structure and KPFM surface potential distribution of c-YY; (d) threshold switching behavior of Ag/c-YY NW/Ag under different compliance current[124]; (e) vertical memristor structure with patterned protein nanowire thin film embedded in Ag-SiO2-Pt device structure; (f) TEM image of protein nanowires (scale bar: 100 nm); (g) schematic of the cathodic reduction process of Ag+ facilitated by protein nanowires; (h) threshold switching behavior of protein nanowire devices under 800 consecutive I-V scanning[126]; (i) schematic of ion transport optimization based on highly-ordered crystal arrangement of intrinsic nanostructures; (j), (k) schematic of ordered nanocrystals and uniform ion migration pathways in PBFCL10 thin film; (l) current mapping on the surface of PBFCL10 film characterized by C-AFM; (m) typical I-V characteristics of Ag/PBFCL10/Au[131].

    图 6  (a) 掺杂离子策略——增大离子总量与优化离子传输路径示意图; (b) Ag/Ag掺杂的CM:κ-car/Pt的原理图; (c) Ag/Ag掺杂的CM:κ-car /Pt器件的典型I-V曲线[136]; (d) Ag-iPS的差分电荷密度分布; (e) Ag/Ag-iPS(~40 nm)/Au忆阻器100次循环内的I-V曲线[138]; (f) MAPbI3:Ag忆阻器在0 V→1 V→0 V→–1 V→0 V下的双向阈值开关行为; (g) MAPbI3:Ag扩散忆阻器中执行神经模拟活动的阈值激发和自发弛豫的工作机制示意图[59]; (h) Au/YSZ:Ag/Au/Ti忆阻器连续50个直流电压扫描循环(0→1.1 V→0 V→–1 V→0 V), 展示出可重复的双向阈值开关行为; (i) TEM观察下的YSZ:Ag忆阻器阈值切换过程, 初始器件具有约25 nm的大银簇; (j) 直流扫描将银簇分解为约10 nm的小银纳米颗粒, 形成锥形渗透通道; (k), (l) YSZ:Ag忆阻器中Ag团簇演化的初始状态和加正偏压后的形态[139]

    Fig. 6.  (a) Doped ion strategy—schematic diagram illustrating increased total ion amount and optimized ion transport pathways; (b) schematic diagram of Ag/Ag-doped CM:κ-car/Pt; (c) typical I-V curve of Ag/Ag-doped CM:κ-car/Pt[136]; (d) differential charge density distribution of Ag-iPS; (e) I-V curves within 100 cycles for Ag/Ag-iPS (~40 nm)/Au memristor[138]; (f) bidirectional threshold switching behavior of MAPbI3:Ag memristor under 0 V → 1 V → 0 V → –1 V → 0 V; (g) schematic diagram illustrating threshold excitation for simulation neural activity and spontaneous relaxation in MAPbI3:Ag diffusion memristor[59]; (h) continuous 50 cycles of DC voltage scans (0 → 1.1 V → 0 V → –1 V → 0 V) in Au/YSZ:Ag/Au/Ti memristor, demonstrating repeatable bidirectional threshold switching behavior; (i) TEM observation of YSZ:Ag memristor threshold switching process, with initial device featuring large silver clusters (~25 nm); (j) DC scan decomposing silver clusters into smaller silver nanoparticles (~10 nm), forming conical permeation channels; (k), (l) initial state and morphology after applying positive bias of silver cluster evolution in YSZ:Ag memristor[139].

    图 7  掺杂离子策略——改善电荷存储/释放过程 (a) Ni原子周围电荷缺乏区域的差分电荷密度分布表现出超快开关速度和原子尺寸效应引起的库仑阻塞, 以实现长数据保留能力; (b) Au/NiSAs/N-C/PVP/ITO忆阻器100次循环的I-V特性曲线和(c) 保留时间[99]; (d)—(g) ITO/Silk:AgNO3/Ag的工作机制模型[146]

    Fig. 7.  Doped ion strategy—improving charge storage/release processes: (a) Differential charge density distribution around Ni atoms showing ultrafast switching speed and Coulomb blockade for long retention due to atomic size effects; (b) the I-V characteristic curves and (c) retention time of 100 cycles of memristor[99]; (d)–(g) mechanism schematic of ITO/Silk:AgNO3/Ag[146].

    图 8  (a) 界面优化策略——钝化界面缺陷示意图; (b) 经过/未经过PEAI钝化的MAPbI3薄膜的时间分辨光致发光光谱; (c) 经过/未经过PEAI钝化的PET-ITO/MAPbI3/PEAI/Au忆阻器的双对数I-V特性; (d) 在不同频率(4.17, 2.94, 1.85, 1.06, 0.87 MHz)下的电流响应[152]; (e) Ag/CsI/MoOx/Ag忆阻器示意图; (f) Ag/CsI/MoOx/Ag器件I-V特性; (g) Ag/CsI/MoOx/Ag忆阻器在136000次循环耐久性测试中的表现[62]

    Fig. 8.  (a) Interface optimization strategy—passivating interface defect schematic; (b) TRPL spectra of MAPbI3 with/without PEAI passivation; (c) double logarithmic I-V characteristics of PET-ITO/MAPbI3/PEAI/Au memristors with/without PEAI passivation; (d) current response at different frequencies (4.17, 2.94, 1.85, 1.06, 0.87 MHz)[152]; (e) schematic diagram of Ag/CsI/MoOx/Ag memristor; (f) the I-V characteristics of Ag/CsI/MoOx/Ag device; (g) endurance test of Ag/CsI/MoOx/Ag memristors under 136000 cycles[62].

    图 9  界面优化策略——保持范德瓦耳斯接触 (a), (b) 将Ag电极转移到SnSe片的另一侧完成Ag/SnOx/SnSe器件; (c) Ag/SnOx/SnSe界面的横截面TEM图像; (d) Ag/SnOx/SnSe忆阻器I-V 特性曲线; (e) 通过分别施加1 V, –1 V的编程电压脉冲和0.1 V的读取电压(蓝色曲线), 并仅在读取操作期间测量电流(红色曲线), 演示写入、擦除和读取操作[157]; (f) 在SiO2/Si基板上制造的GeTe/MoTe2忆阻器示意图; (g) 器件横截面高分辨率TEM图像; (h) 面积在10 μm×10 μm时的I-V特性曲线[162]

    Fig. 9.  Interface optimization strategy—maintaining van der Waals contact: (a), (b) Ag electrode transferred to the other side of SnSe flake to complete Ag/SnOx/SnSe device; (c) cross-sectional TEM image of Ag/SnOx/SnSe interface; (d) I-V characteristic curve of Ag/SnOx/SnSe memristor; (e) demonstration of write, erase, and read operations by applying programming voltage pulses of 1 V and –1 V, a reading voltage of 0.1 V (blue curve), and measuring current only during the reading operation (red curve) [157]; (f) schematic diagram of GeTe/MoTe2 memristors fabricated on SiO2/Si substrate; (g) high-resolution cross-sectional TEM image of device; (h) the I-V characteristic of 10 μm×10 μm memristive device[162].

    图 10  基于低电压忆阻器的神经元功能模拟及计算应用 (a) 生物神经元和细胞膜结构; (b), (c) TS器件模拟神经元基本动作电位发放过程[109]; (d) 将触觉传感单元中输出电压传至人工神经元的电路图; (e), (f) 通过按压压力传感器的电压输入, 人工神经元中的膜电位(Vm)和电流(I)发生变化[127]; (g) 不同健康个体的呼吸模式; (h) 湿度感知神经元电路示意图; (i) 人工湿度传感神经元在不同湿度脉冲刺激下的响应; (j) 不同湿度脉冲刺激下的异步ST1和ST2结果; (k) 用于肺部疾病分类的3层神经网络示意图; (l) 分类结果的混淆矩阵[124]

    Fig. 10.  Neural function simulation and computational applications based on low-voltage memristors: (a) Biological neurons and cell membrane structure; (b), (c) TS device simulating the basic action potential firing process of neurons[109]; (d) circuit diagram for transmitting output voltage from tactile sensing unit to artificial neurons; (e), (f) changes in membrane potential (Vm) and current (I) in artificial neurons due to voltage input from pressure sensor[127]; (g) breathing patterns of different healthy individuals; (h) circuit diagram of humidity-sensing neurons; (i) response of artificial humidity-sensing neurons to different humidity pulse stimuli; (j) asynchronous ST1 and ST2 results under different humidity pulse stimuli; (k) schematic diagram of a three-layer neural network used for lung disease classification; (l) confusion matrix of classification results[124].

    图 11  基于低电压忆阻器的突触功能模拟及计算应用 (a)—(c) 生物突触与忆阻器结构相似性示意图; (d) PET-ITO/MAPbI3/PEAI/Au忆阻器在具有不同的持续时间的单个脉冲下的SDDP行为(d1 = 68 ms, d2= 136 ms, d3 = 545 ms, d4 = 615 ms), 电压保持为–0.5 V; (e) 在具有不同频率的连续脉冲下的SRDP行为(f1 = 1.06 Hz, f2 = 6.39 Hz), 每组脉冲为10个, 电压保持为–0.5 V, 脉宽为68 ms; (f) 增强和抑制的循环[152]; (g) Au/PBFCL10/Ag忆阻器电导连续调制过程; (h) 具有自反馈的HNN结合了基于线性、指数和忆阻器的CSA算法; (i) 在420次迭代后, 使用HNN网络预测的突触权重矩阵、输出矩阵和行进路线的结果[131]

    Fig. 11.  Based on the low-voltage memristor synaptic function simulation and computational applications: (a)–(c) Schematic diagram of the similarity between biological synapses and memristor structures; (d) SDDP behavior of PET-ITO/MAPbI3/PEAI/Au memristor under a single pulse with different durations (d1 = 68 ms, d2 = 136 ms, d3 = 545 ms, d4 = 615 ms) while maintaining a voltage of –0.5 V; (e) SRDP behavior under continuous pulses with different frequencies (f1 = 1.06 Hz, f2 = 6.39 Hz), each consisting of 10 pulses, while maintaining a voltage of –0.5 V and a pulse width of 68 ms; (f) enhancement and inhibition cycles[152]; (g) conductive modulation process of Au/PBFCL10/Ag memristor; (h) HNN with self-feedback combining linear, exponential, and memristor-based CSA algorithms; (i) results of synaptic weight matrix, output matrix, and path prediction using the HNN network after 420 iterations[131].

    表 1  低电压忆阻器性能总结

    Table 1.  Summary of low-voltage memristor performance.

    器件
    结构
    工作机制 开关电压 开关比 开关
    速度/ns
    保留
    时间
    耐久性
    (循环)
    功耗/
    能耗
    应用 文献
    Pt/HfAlOx/TaN VCM BRS:
    +1/–1 V
    50 4.28 aJ 手写数字识别 [171]
    Ta/Ta2O5:Ag/Ru ECM BRS:
    +0.7 V/–0.7 V
    100 ≈5×104 s 5×107 [42]
    Pt/YSZ/Zr VCM BRS:
    +0.7 V/–0.7 V
    2 104 s 108 [172]
    Ag/SnOx/SnSe ECM BRS: +0.4/–0.1 V >103 105 s 4000 [157]
    EGaIn/MACsPbI/
    PEDOT: PSS/ITO
    VCM BRS:
    +0.6/–0.41 V
    >105 105 s 104 3.8 mW [114]
    ITO/FA1–yMAyPbI3–xClx/
    (PEA)2PbI4/Au
    VCM BRS:
    +1.0/–0.5 V
    200 1 fJ 突触功能模拟 [49]
    Ag/PMMA/MAPbI3:
    Ag/Au
    ECM TS:±0.22 V 40 2500 10 μW 伤害传感器 [59]
    Ag/CsPbI3/Ag ECM TS:100 mV 100 ms 2 nW 储备池计算 [111]
    PET-ITO/MAPbI3/
    PEAI/Au
    VCM BRS:
    +1/–1 V
    50 13.5 aJ 神经元积分-
    发放功能
    [152]
    Ag/MoOx/
    CsI (CsBr)/Ag
    ECM BRS:
    –0.16/+0.07 V
    >1010 <200 >106 s >105 <3.31 pW 模拟手写数字分类 [62]
    Pt/CuI/Cu ECM BRS:
    +0.64/–0.19 V
    103 17 h 125 8.73 µW 图像硬件加密和解密 [10]
    Ag/PMMA/
    Cs2AgBiBr6/ITO
    ECM BRS:
    +0.6/–0.6 V
    >10 188 pJ 手写数字识别 [58]
    Pt/MoS2/Ti VCM BRS:
    +0.65/–0.90 V
    160 10 years 1×107 [117]
    Au/HfSe2/Au VCM BRS:
    +0.742/–0.817 V
    102 500 0.82 pJ 矩阵计算 [80]
    Ag/BNOx/Graphene ECM BRS: 0.6/0.1 V 100-1000 100 [75]
    Ag/Protein nanowires/Ag ECM TS:60 ± 4 mV 104 神经元-突触
    联立积分发放
    [126]
    Au/PBFCL10/Ag ECM BRS:
    +0.2/–0.2 V
    21 >106 s 2.35 μW HNN [131]
    ITO/PEDOT:PSS/
    pTPD/CsPbBr3NCs/Ag
    ECM TS:<1 V 103 105 s TS:2×106BRS:5.6×103 储备池计算 [154]
    Au/MSFP/Au VCM BRS:
    +1.0/–1.0 V
    104 s 100 图像处理 [106]
    ITO/PVK:TCNQ/Ag ECM BRS:
    +0.69/–0.52 V
    TS:0.21 V
    ≈103 104 s 104 15.2 μW 突触、神经元
    功能模拟
    [109]
    Au/TPPS/Au VCM BRS:
    –0.1/+0.3 V
    16.25 pW—
    2.06 nW
    突触模拟 [105]
    W(Ag)/PI/Pt/Ti ECM TS:0.56 V ≈103 0.44 ms 300 80 nW 图像处理 [107]
    Pt/CuZnS/Ag ECM Vset=0.089 V ≈106 >1000 s 100 0.1 nW 模式识别 [132]
    Pt/DDP-CuNPs/Au VCM TS:4 mV 100 SNN [145]
    Ag/c-YY NW/Ag ECM TS:≤0.1 V 106 750 fJ SNN [124]
    Ag/Ag-IPS/Au ECM BRS:
    +0.43/–0.21 V
    108 100 105 s 900 18.5 fJ 图像处理 [138]
    Ag/PMMA/MAPbI3:
    Ag/Au
    ECM TS:≈0.2 V 40 2500 伤害感受器 [59]
    Al/Ti3C2:Ag/Pt VCM BRS:
    +2.0/–2.0 V
    106 0.35 pJ 突触模拟 [137]
    Ag/TiO2:Ag/Pt ECM BRS:
    +0.1/–0.1 V
    26.0 pJ 突触模拟 [140]
    ITO/NiSAs/
    N-C/PVP/Au
    VCM BRS:
    +0.7/–1.1 V
    103 100 >106 s 500 全加器 [99]
    Au/silk: AgNO3/Ag ECM TS:0.17 V 3 × 106 103 s 100 突触模拟 [147]
    Ag/MXene/Pt ECM BRS:
    +1.33/–0.94 V
    >105 104 s 103 1~10 fJ ANN [149]
    Ag/a-COx/ta-C/Pt ECM BRS:1.5 V/–1.0 V 100 s 6 nW [155]
    Au/h-BN/Au VCM TS:0.1 V 107 40 >20000 s 500 逻辑门 [158]
    Ag/GeTe/MoTe2/Pt ECM BRS:
    +0.15/–0.14 V
    102 104 s 105 ≈30 nJ 突触模拟 [162]
    Ag/SnS/Pt ECM BRS:
    +0.2/–0.1 V
    108 1.5 105 s 104 100 fJ 图像分类 [73]
    下载: 导出CSV
  • [1]

    Di Ventra M, Pershin Y V 2013 Nat. Phys. 9 200Google Scholar

    [2]

    Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F, Waser R 2013 Nat. Commun. 4 1771Google Scholar

    [3]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [4]

    Zhang X M, Zhuo Y, Luo Q, Wu Z H, Midya R, Wang Z R, Song W H, Wang R, Upadhyay N K, Fang Y L, Kiani F, Rao M Y, Yang Y, Xia Q F, Liu Q, Liu M, Yang J J 2020 Nat. Commun. 11 51Google Scholar

    [5]

    Li X Y, Tang J S, Zhang Q T, Gao B, Yang J J, Song S, Wu W, Zhang W Q, Yao P, Deng N, Deng L, Xie Y, Qian H, Wu H Q 2020 Nat. Nanotechnol. 15 776Google Scholar

    [6]

    Choi S, Yang J, Wang G 2020 Adv. Mater. 32 2004659Google Scholar

    [7]

    He K, Liu Y Q, Yu J C, Guo X T, Wang M, Zhang L D, Wan C J, Wang T, Zhou C J, Chen X D 2022 ACS Nano 16 9691Google Scholar

    [8]

    Kim N, Oh J, Kim S, Cha J H, Choi J, Im S G, Choi S Y, Jang B C 2024 Adv. Funct. Mater. 34 2305136Google Scholar

    [9]

    Yang J Q, Zhang F, Xiao H M, Wang Z P, Xie P, Feng Z H, Wang J J, Mao J Y, Zhou Y, Han S T 2022 ACS Nano 16 21324Google Scholar

    [10]

    Li B, Wei W, Luo L, Gao M, Yu Z G, Li S, Ang K W, Zhu C 2022 Adv. Electron. Mater. 8 2200089Google Scholar

    [11]

    Zhao H, Liu Z W, Tang J S, Gao B, Qin Q, Li J M, Zhou Y, Yao P, Xi Y, Lin Y D, Qian H, Wu H Q 2023 Nat. Commun. 14 2276Google Scholar

    [12]

    Cai B Q, Huang Y, Tang L Z, Wang T Y, Wang C, Sun Q Q, Zhang D W, Chen L 2023 Adv. Funct. Mater. 33 2306272Google Scholar

    [13]

    Duan H, Cheng S Q, Qin L, Zhang X L, Xie B Y, Zhang Y, Jie W J 2022 J. Phys. Chem. Lett. 13 7130Google Scholar

    [14]

    Eberhardt D T 1989 International 1989 Joint Conference on Neural Networks Washington, DC, USA, June 18-22, 1989 pp183-190

    [15]

    Calimera A, Macii E, Poncino M 2013 Funct Neurol. 28 191

    [16]

    Andreou A G, Meitzler R C, Strohbehn K, Boahen K A 1995 Neural Networks 8 1323Google Scholar

    [17]

    Song M K, Kang J H, Zhang X Y, Ji W, Ascoli A, Messaris I, Demirkol A S, Dong B, Aggarwal S, Wan W 2023 ACS Nano 17 11994Google Scholar

    [18]

    Park Y J, Lee J S 2022 J. Phys. Chem. Lett. 13 5638Google Scholar

    [19]

    Wang J J, Qian F S, Huang S M, Lv Z Y, Wang Y, Xing X C, Chen M, Han S T, Zhou Y 2020 Adv. Intell. Syst. 3 2000180Google Scholar

    [20]

    Hirose Y, Hirose H 1976 J. Appl. Phys. Vol. 47 2767Google Scholar

    [21]

    Waser R, Aono M 2007 Nat. Mater. 6 833Google Scholar

    [22]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [23]

    Vasilopoulou M, Mohd Yusoff A R b, Chai Y, Kourtis M A, Matsushima T, Gasparini N, Du R, Gao F, Nazeeruddin M K, Anthopoulos T D, Noh Y Y 2023 Nat. Electron. 6 949Google Scholar

    [24]

    Cheng P, Sun K, Hu Y H 2016 Nano Lett. 16 572Google Scholar

    [25]

    Lin W P, Liu S J, Gong T, Zhao Q, Huang W 2014 Adv. Mater. 26 570Google Scholar

    [26]

    Kumar S, Wang X, Strachan J P, Yang Y, Lu W D 2022 Nat. Rev. Mater. 7 575Google Scholar

    [27]

    Moon J, Ma W, Shin J H, Cai F, Du C, Lee S H, Lu W D 2019 Nat. Electron. 2 480Google Scholar

    [28]

    West W C, Sieradzki K, Kardynal B, Kozicki M N 1998 J. Electrochem. Soc. 145 2971Google Scholar

    [29]

    Yang Y C, Gao P, Li L, Pan X Q, Tappertzhofen S, Choi S, Waser R, Valov I, Lu W D 2014 Nat. Commun. 5 4232Google Scholar

    [30]

    Zhu J D, Zhang T, Yang Y Y, Huang R 2020 Appl. Phys. Rev. 7 011312Google Scholar

    [31]

    Xu W T, Cho H C, Kim Y H, Kim Y T, Wolf C, Park C G, Lee T o 2016 Adv. Mater. 28 5916Google Scholar

    [32]

    Xiao Z G, Huang J S 2016 Adv. Electron. Mater. 2 1600100Google Scholar

    [33]

    Sawa A 2008 Mater. Today 11 28Google Scholar

    [34]

    Rao M Y, Tang H, Wu J B, Song W H, Zhang M, Yin W B, Zhuo Y, Kiani F, Chen B, Jiang X Q, Liu H F, Chen H Y, Midya R, Ye F, Jiang H, Wang Z R, Wu M C, Hu M, Wang H, Xia Q F, Ge N, Li J, Yang J J 2023 Nature 615 823Google Scholar

    [35]

    Song W H, Rao M Y, Li Y N, Li C, Zhuo Y, Cai F X, Wu M C, Yin W B, Li Z Z, Wei Q 2024 Science 383 903Google Scholar

    [36]

    Yang J J, Strukov D B, Stewart D R 2012 Nat. Nanotechnol. 8 13Google Scholar

    [37]

    Li Z N, Tian B Y, Xue K H, Wang B, Xu M, Lu H, Sun H J, Miao X S 2019 IEEE Electron Device Lett. 40 1068Google Scholar

    [38]

    Carlos E, Deuermeier J, Branquinho R, Gaspar C, Martins R, Kiazadeh A, Fortunato E 2021 J. Mater. Chem. C 9 3911Google Scholar

    [39]

    Bian L Y, Xie M, Chong H, Zhang Z W, Liu G Y, Han Q S, Ge J Y, Liu Z, Lei Y, Zhang G W, Xie L H 2022 Chin. J. Chem. 40 2451Google Scholar

    [40]

    Yue J L, Zou L Q, Bai N, Zhu C Q, Yi Y H, Xue F, Sun H J, Hu S, Cheng W M, He Q 2024 Small Methods n/a 2301657

    [41]

    Saleem A, Kumar D, Singh A, Rajasekaran S, Tseng T Y 2022 Adv. Mater. Technol. 7 2101208Google Scholar

    [42]

    Yoon J H, Zhang J M, Ren X C, Wang Z R, Wu H Q, Li Z Y, Barnell M, Wu Q, Lauhon L J, Xia Q F 2017 Adv. Funct. Mater. 27 1702010Google Scholar

    [43]

    Li Y, Chu J X, Duan W J, Cai G S, Fan X H, Wang X Z, Wang G, Pei Y L 2018 ACS Appl. Mater. Interfaces 10 24598Google Scholar

    [44]

    She Y, Wang F, Zhao X Y, Zhang Z Z, Li C, Pan H G, Hu K, Song Z T, Zhang K L 2021 IEEE Trans. Electron Devices 68 1950Google Scholar

    [45]

    Yuan R, Tiw P J, Cai L, Yang Z Y, Liu C, Zhang T, Ge C, Huang R, Yang Y C 2023 Nat. Commun. 14 3695Google Scholar

    [46]

    Yang K, Wang Y H, Tiw P J, Wang C M, Zou X L, Yuan R, Liu C, Li G, Ge C, Wu S, Zhang T, Huang R, Yang Y C 2024 Nat. Commun. 15 1693Google Scholar

    [47]

    Fu Y Y, Zhou Y, Huang X D, Dong B Y, Zhuge F W, Li Y, He Y H, Chai Y, Miao X S 2022 Adv. Funct. Mater. 32 2111996Google Scholar

    [48]

    Liu Z H, Cheng P P, Kang R Y, Zhou J, Zhao X, Zhao J, Zuo Z Y 2023 Adv. Mater. Interfaces 10 2201513Google Scholar

    [49]

    Sun K X, Wang Q R, Zhou L, Wang J J, Chang J J, Guo R, Tay B K, Yan X B 2023 Sci. China Mater. 66 2013Google Scholar

    [50]

    Berruet M, Pérez-Martínez J C, Romero B, Gonzales C, Al-Mayouf A M, Guerrero A, Bisquert J 2022 ACS Energy Lett. 7 1214Google Scholar

    [51]

    Huang F C, Ge S P, Wei R L, He J Q, Ma X L, Tao J, Lu Q C, Mo X M, Wang C F, Pan C F 2022 ACS Appl. Mater. Interfaces 14 43474Google Scholar

    [52]

    Kim S G, Van Le Q, Han J S, Kim H, Choi M J, Lee S A, Kim T L, Kim S B, Kim S Y, Jang H W 2019 Adv. Funct. Mater. 29 1906686Google Scholar

    [53]

    Abbas G, Hassan M, Khan Q, Wang H F, Zhou G G, Zubair M, Xu X R, Peng Z C 2022 Adv. Electron. Mater. 8 2101412Google Scholar

    [54]

    John R A, Shah N, Vishwanath S K, Ng S E, Febriansyah B, Jagadeeswararao M, Chang C H, Basu A, Mathews N 2021 Nat. Commun. 12 3681Google Scholar

    [55]

    Cheng X F, Qian W H, Wang J, Yu C, He J H, Li H, Xu Q F, Chen D Y, Li N J, Lu J M 2019 Small 15 1905731Google Scholar

    [56]

    Zeng F J, Guo Y Y, Hu W, Tan Y Q, Zhang X M, Feng J L, Tang X S 2020 ACS Appl. Mater. Interfaces 12 23094Google Scholar

    [57]

    Ren Y Y, Bu X B, Wang M, Gong Y, Wang J J, Yang Y Y, Li G J, Zhang M, Zhou Y, Han S T 2022 Nat. Commun. 13 5585Google Scholar

    [58]

    Lao J, Xu W, Jiang C L, Zhong N, Tian B B, Lin H C, Luo C H, Travas-sejdic J, Peng H, Duan C G 2021 J. Mater. Chem. C 9 5706Google Scholar

    [59]

    Im I H, Baek J H, Kim S J, Kim J, Park S H, Kim J Y, Yang J J, Jang H W 2023 Adv. Mater. 36 2307334Google Scholar

    [60]

    Li J X, Yang Y C, Yin M H, Sun X H, Li L D, Huang R 2020 Mater. Horiz. 7 71Google Scholar

    [61]

    Mishra D, Mokurala K, Kumar A, Seo S G, Jo H B, Jin S H 2022 Adv. Funct. Mater. 33 2211022Google Scholar

    [62]

    Su T K, Cheng W K, Chen C Y, Wang W C, Chuang Y T, Tan G H, Lin H C, Hou C H, Liu C M, Chang Y C, Shyue J J, Wu K C, Lin H W 2022 ACS Nano 16 12979Google Scholar

    [63]

    Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J, Ham D 2019 Nano Lett. 19 2411Google Scholar

    [64]

    Yin L, Cheng R Q, Wen Y, Zhai B X, Jiang J, Wang H, Liu C S, He J 2022 Adv. Mater. 34 2108313Google Scholar

    [65]

    Wang Y S, Liu H W, Liu P, Lu W L, Cui J Q, Chen X Y, Lu M 2022 J. Alloys Compd. 909 164775Google Scholar

    [66]

    Wu X H, Ge R J, Chen P A, Chou H, Zhang Z P, Zhang Y F, Banerjee S, Chiang M H, Lee J C, Akinwande D 2019 Adv. Mater. 31 1806790Google Scholar

    [67]

    Liu X L, Zhang C, Li E L, Gao C F, Wang R X, Liu Y, Liu F C, Shi W, Yuan Y H, Sun J, Lin Y F, Chu J H, Li W W 2024 Adv. Funct. Mater. 34 2309642Google Scholar

    [68]

    Chen H H, Kang Y, Pu D, Tian M, Wan N, Xu Y, Yu B, Jie W J, Zhao Y D 2023 Nanoscale 15 4309Google Scholar

    [69]

    Bertolazzi S, Bondavalli P, Roche S, San T, Choi S Y, Colombo L, Samorì P, Bonaccorso F 2019 Adv. Mater. 31 1806663Google Scholar

    [70]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [71]

    Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y 2012 Nat. Commun. 3 1011Google Scholar

    [72]

    Gosai J, Patel M, Liu L, Lokhandwala A, Thakkar P, Chee M Y, Jain M, Lew W S, Chaudhari N, Solanki A 2024 ACS Appl. Mater. Interfaces 16 17821Google Scholar

    [73]

    Lu X F, Zhang Y S, Wang N Z, Luo S, Peng K L, Wang L, Chen H, Gao W B, Chen X H, Bao Y, Liang G c, Loh K P 2021 Nano Lett. 21 8800Google Scholar

    [74]

    Sun Y J, Zhang R J, Teng C J, Tan J Y, Zhang Z H, Li S N, Wang J W, Zhao S L, Chen W J, Liu B L, Cheng H M 2023 Mater. Today 66 9Google Scholar

    [75]

    Zhao H, Dong Z P, Tian H, DiMarzi D, Han M G, Zhang L H, Yan X D, Liu F X, Shen L, Han S J 2017 Adv. Mater. 29 1703232Google Scholar

    [76]

    Eda G, Fanchini G, Chhowalla M 2008 Nat. Nanotechnol. 3 270Google Scholar

    [77]

    Wang J, Liang M H, Fang Y, Qiu T F, Zhang J, Zhi L J 2012 Adv. Mater. 24 2874Google Scholar

    [78]

    Sun Q J, Kim D H, Park S S, Lee N Y, Zhang Y, Lee J H, Cho K, Cho J H 2014 Adv. Mater. 26 4735Google Scholar

    [79]

    Wang K Y, Li L T, Zhao R J, Zhao J H, Zhou Z Y, Wang J J, Wang H, Tang B K, Lu C, Lou J Z, Chen J S, Yan X B 2020 Adv. Electron. Mater. 6 1901342Google Scholar

    [80]

    Li S F, Pam M E, Li Y S, Chen L, Chien Y C, Fong X Y, Chi D Z, Ang K W 2022 Adv. Mater. 34 2103376Google Scholar

    [81]

    Feng X W, Li Y D, Wang L, Chen S, Yu Z G, Tan W C, Macadam N, Hu G H, Huang L, Chen L, Gong X, Chi D Z, Hasan T, Thean A V Y, Zhang Y W, Ang K W 2019 Adv. Electron. Mater. 5 1900740Google Scholar

    [82]

    Shi Y Y, Liang X H, Yuan B, Chen V, Li H T, Hui F, Yu Z C W, Yuan F, Pop E, Wong H S P, Lanza M 2018 Nat. Electron. 1 458Google Scholar

    [83]

    Ding G L, Chen R S, Xie P, Yang B D, Shang G, Liu Y, Gao L L, Mo W A, Zhou K, Han S T, Zhou Y 2022 Small 18 2200185Google Scholar

    [84]

    Nikam R D, Rajput K G, Hwang H 2021 Small 17 2006760Google Scholar

    [85]

    Ling S T, Zhang C, Ma C L, Li Y, Zhang Q C 2022 Adv. Funct. Mater. 33 2208320Google Scholar

    [86]

    Wang K, Dai S L, Zhao Y W, Wang Y, Liu C, Huang J 2019 Small 15 1900010Google Scholar

    [87]

    Yan X B, Wang K Y, Zhao J H, Zhou Z Y, Wang H, Wang J J, Zhang L, Li X Y, Xiao Z, Zhao Q L, Pei Y F, Wang G, Qin C Y, Li H, Lou J Z, Liu Q, Zhou P 2019 Small 15 1900107Google Scholar

    [88]

    Sokolov A, Ali M, Li H, Jeon Y R, Ko M J, Choi C 2020 Adv. Electron. Mater. 7 2000866Google Scholar

    [89]

    He N, Zhang Q Q, Tao L Y, Chen X T, Qin Q, Liu X Y, Lian X J, Wan X, Hu E, Xu J G, Xu F, Tong Y 2021 IEEE Electron Device Lett. 42 319Google Scholar

    [90]

    Wang T Y, Meng J L, Zhou X F, Liu Y, He Z Y, Han Q, Li Q X, Yu J J, Li Z H, Liu Y K, Zhu H, Sun Q Q, Zhang D W, Chen P N, Peng H S, Chen L 2022 Nat. Commun. 13 7432Google Scholar

    [91]

    Ahmed T, Kuriakose S, Tawfik S A, Mayes E L, Mazumder A, Balendhran S, Spencer M J, Akinwande D, Bhaskaran M, Sriram S, Walia S 2022 Adv. Funct. Mater. 32 2107068Google Scholar

    [92]

    Ouyang J Y, Chu C W, Szmanda C R, Ma L P, Yang Y 2004 Nat. Mater. 3 918Google Scholar

    [93]

    Hota M K, Bera M K, Kundu B, Kundu S C, Maiti C K 2012 Adv. Funct. Mater. 22 4493Google Scholar

    [94]

    Li S Z, Zeng F, Chen C, Liu H Y, Tang G S, Gao S, Song C, Lin Y S, Pan F, Guo D 2013 J. Mater. Chem. C 1 5292Google Scholar

    [95]

    Li J Y, Qian Y Z, Li W, Yu S C, Ke Y X, Qian H W, Lin Y H, Hou C H, Shyue J J, Zhou J, Chen Y, Xu J P, Zhu J T, Yi M D, Huang W 2023 Adv. Mater. 35 2209728Google Scholar

    [96]

    Luo X L, Ming J Y, Gao J C, Zhuang J W, Fu J W, Ren Z H, Ling H F, Xie L H 2022 Front. Neurosci. 16Google Scholar

    [97]

    Wang L, Qu J X, Li J Z, Wen D Z 2023 Adv. Mater. Technol. 8 2201540Google Scholar

    [98]

    Wang L, Yang J, Zhang X F, Wen D Z 2023 Nanomaterials 13 3021Google Scholar

    [99]

    Li H X, Li Q X, Li F Z, Liu J P, Gong G D, Zhang Y Q, Leng Y B, Sun T, Zhou Y, Han S T 2023 Adv. Mater. 36 2308153Google Scholar

    [100]

    Shaikh M T A S, Nguyen T H V, Jeon H J, Prasad C V, Kim K J, Jo E S, Kim S, Rim Y S 2024 Adv. Sci. 11 2306206Google Scholar

    [101]

    Wang Z Y, Wang L Y, Wu Y M, Bian L Y, Nagai M, Jv R L, Xie L H, Ling H F, Li Q, Bian H Y, Yi M D, Shi N E, Liu X G, Huang W 2021 Adv. Mater. 33 2104370Google Scholar

    [102]

    Zhou J, Li W, Chen Y, Lin Y H, Yi M D, Li J Y, Qian Y Z, Guo Y, Cao K Y, Xie L H, Ling H F, Ren Z J, Xu J P, Zhu J T, Yan S K, Huang W 2020 Adv. Mater. 33 2006201Google Scholar

    [103]

    Yan X B, Li X Y, Zhou Z Y, Zhao J H, Wang H, Wang J J, Zhang L, Ren D L, Zhang X, Chen J S 2019 ACS Appl. Mater. Interfaces 11 18654Google Scholar

    [104]

    Lin Y, Xu H Y, Wang Z Q, Cong T, Liu W Z, Ma H L, Liu Y C 2017 Appl. Phys. Lett. 110 193503Google Scholar

    [105]

    Liu S Z, He Z L, Zhang B, Zhong X L, Guo B J, Chen W L, Duan H X, Tong Y, He H D, Chen Y, Liu G 2023 Adv. Sci. 10 2305075Google Scholar

    [106]

    Zhou G D, Li J, Song Q L, Wang L D, Ren Z J, Sun B, Hu X F, Wang W H, Xu G B, Chen X D, Cheng L, Zhou F C, Duan S K 2023 Nat. Commun. 14 8489Google Scholar

    [107]

    Wang R, Wang S S, Xin Y H, Cao Y X, Liang Y, Peng Y Q, Feng J, Li Y, Lv L, Ma X H, Wang H, Hao Y 2023 Small Sci. 3 2200082Google Scholar

    [108]

    Oh J, Yang S Y, Kim S, Lee C, Cha J H, Jang B C, Im S G, Choi S Y 2023 Mater. Horiz. 10 2035Google Scholar

    [109]

    Zhang T, Wang L Y, Ding W W, Zhu Y F, Qian H W, Zhou J, Chen Y, Li J Y, Li W, Huang L Y, Song C Y, Yi M D, Huang W 2023 Adv. Mater. 35 2302863Google Scholar

    [110]

    Wang Y L, Su J, Ouyang G Y, Geng S Y, Ren M C, Pan W L, Bian J, Cao M H 2024 Adv. Funct. Mater. 34 2316397Google Scholar

    [111]

    Zhu X J, Wang Q W, Lu W D 2020 Nat. Commun. 11 2439Google Scholar

    [112]

    Zhu X J, Lee J H, Lu W D 2017 Adv. Mater. 29 1700527Google Scholar

    [113]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [114]

    Liu Z H, Cheng P P, Li Y F, Kang R Y, Zhou J, Zhao J, Zuo Z Y 2022 Mater. Chem. Phys. 288 126393Google Scholar

    [115]

    Bala A, Sen A, Shim J, Gandla S, Kim S 2023 ACS Nano 17 13784Google Scholar

    [116]

    Chaudhary M, Yang T Y, Chen C T, Lai P C, Hsu Y C, Peng Y R, Kumar A, Lee C H, Chueh Y L 2023 Adv. Funct. Mater. 33 2303697Google Scholar

    [117]

    Tang B S, Veluri H, Li Y D, Yu Z G, Waqar M, Leong J F, Sivan M, Zamburg E, Zhang Y W, Wang J, Thean A V Y 2022 Nat. Commun. 13 3037Google Scholar

    [118]

    Wang X J, Zhou Z, Ban C Y, Zhang Z P, Ju S, Huang X, Mao H W, Chang Q, Yin Y H, Song M Y, Cheng S, Ding Y M, Liu Z D, Ju R L, Xie L L, Miao F, Liu J Q, Huang W 2020 Adv. Sci. 7 1902864Google Scholar

    [119]

    Chen J, Wang X J, Lu H, Liu Z D, Xiu F, Ban C Y, Zhou Z, Song M Y, Ju S, Chang Q, Liu J Q, Huang W 2018 Small Methods 2 1800040Google Scholar

    [120]

    Li Y J, Tang J S, Gao B, Sun W, Hua Q L, Zhang W B, Li X Y, Zhang W R, Qian H, Wu H Q 2020 Adv. Sci. 7 2002251Google Scholar

    [121]

    Choi S H, Park S O, Seo S, Choi S 2022 Sci. Adv. 8 eabj7866Google Scholar

    [122]

    Xu W T, Min S Y, Hwang H, Lee T W 2016 Sci. Adv. 2 e1501326Google Scholar

    [123]

    Zhao Z, Abdelsamie A, Guo R, Shi S, Zhao J H, Lin W N, Sun K X, Wang J J, Wang J L, Yan X B, Chen J S 2021 Nano Res. 15 2682Google Scholar

    [124]

    Lv Z Y, Zhu S R, Wang Y, Ren Y Y, Luo M T, Wang H N, Zhang G H, Zhai Y B, Zhao S L, Zhou Y, Jiang M H, Leng Y B, Han S T 2024 Adv. Mater. 36 2405145Google Scholar

    [125]

    Lv Z Y, Xing X C, Huang S M, Wang Y, Chen Z H, Gong Y, Zhou Y, Han S T 2021 Matter 4 1702Google Scholar

    [126]

    Fu T, Liu X M, Gao H Y, Ward J E, Liu X R, Yin B, Wang Z R, Zhuo Y, Walker D J, Joshua Yang J, Chen J H, Lovley D R, Yao J 2020 Nat. Commun. 11 1861Google Scholar

    [127]

    Fu T, Liu X M, Fu S, Woodard T, Gao H Y, Lovley D R, Yao J 2021 Nat. Commun. 12 3351Google Scholar

    [128]

    Matsukatova A N, Vdovichenko A Y, Patsaev T D, Forsh P A, Kashkarov P K, Demin V A, Emelyanov A V 2022 Nano Res. 16 3207Google Scholar

    [129]

    Yao Z Z, Pan L, Liu L Z, Zhang J D, Lin Q J, Ye Y X, Zhang Z J, Xiang S C, Chen B L 2019 Sci. Adv. 5 eaaw4515Google Scholar

    [130]

    Zhang B, Chen W L, Zeng J M, Fan F, Gu J W, Chen X H, Yan L, Xie G J, Liu S Z, Yan Q, Baik S J, Zhang Z G, Chen W H, Hou J, El-Khouly M E, Zhang Z, Liu G, Chen Y 2021 Nat. Commun. 12 1984Google Scholar

    [131]

    Liu S Z, Zeng J M, Wu Z X, Hu H, Xu A, Huang X H, Chen W L, Chen Q L, Yu Z, Zhao Y Y 2023 Nat. Commun. 14 7655Google Scholar

    [132]

    Liu Y, Zhou X F, Yan H, Shi X, Chen K, Zhou J Y, Meng J L, Wang T Y, Ai Y, Wu J X 2023 Adv. Mater. 35 2301321Google Scholar

    [133]

    Yan X B, Zhao Q L, Chen A P, Zhao J H, Zhou Z Y, Wang J J, Wang H, Zhang L, Li X Y, Xiao Z, Wang K Y, Qin C Y, Wang G, Pei Y F, Li H, Ren D L, Chen J S, Liu Q 2019 Small 15 1901423Google Scholar

    [134]

    Song Y G, Suh J M, Park J Y, Kim J E, Chun S Y, Kwon J U, Lee H, Jang H W, Kim S, Kang C Y 2021 Adv. Sci. 9 2103484Google Scholar

    [135]

    Liu Y X, Ye C, Chang K C, Li L, Jiang B, Xia C, Liu L, Zhang X, Liu X Y, Xia T 2020 Small 16 2004619Google Scholar

    [136]

    Kim M K, Lee J S 2018 ACS Appl. Mater. Interfaces 10 10280Google Scholar

    [137]

    Wang K Y, Chen J S, Yan X B 2021 Nano Energy 79 105453Google Scholar

    [138]

    Li Y S, Xiong Y, Zhai B X, Yin L, Yu Y L, Wang H, He J 2024 Sci. Adv. 10 eadk9474Google Scholar

    [139]

    Jiang Y, Wang D C, Lin N, Shi S H, Zhang Y, Wang S C, Chen X, Chen H G, Lin Y A, Loong K C 2023 Adv. Sci. 10 2301323Google Scholar

    [140]

    Yan X B, Zhao J H, Liu S, Zhou Z Y, Liu Q, Chen J S, Liu X Y 2017 Adv. Funct. Mater. 28 1705320Google Scholar

    [141]

    Tang L Z, Wang J A, Huang Y, Wang H S, Wang C, Yang Y M 2024 J. Mater. Chem. C 12 3622Google Scholar

    [142]

    Wang T, Wang M, Wang J W, Yang L, Ren X Y, Song G, Chen S S, Yuan Y H, Liu R Q, Pan L, Li Z, Leow W R, Luo Y F, Ji S B, Cui Z Q, He K, Zhang F L, Lv F T, Tian Y Y, Cai K Y, Yang B W, Niu J Y, Zou H C, Liu S R, Xu G L, Fan X, Hu B H, Loh X J, Wang L H, Chen X D 2022 Nat. Electron. 5 586Google Scholar

    [143]

    Zhang Y C, Liu L, Tu B, Cui B, Guo J H, Zhao X, Wang J Y, Yan Y 2023 Nat. Commun. 14 247Google Scholar

    [144]

    Zhang G H, Xiong Z Y, Gong Y, Zhu Z X, Lv Z Y, Wang Y, Yang J Q, Xing X C, Wang Z P, Qin J R, Zhou Y, Han S T 2022 Adv. Funct. Mater. 32 2204721Google Scholar

    [145]

    Liu P S, Hui F, Aguirre F, Saiz F, Tian L L, Han T T, Zhang Z J, Miranda E, Lanza M 2022 Adv. Mater. 34 2201197Google Scholar

    [146]

    Zhang Y, Han F, Fan S, Zhang Y P 2021 ACS Biomater. Sci. Eng. 7 3459Google Scholar

    [147]

    Zhao M M, Wang S S, Li D W, Wang R, Li F F, Wu M Q, Liang K, Ren H H, Zheng X R, Guo C C, Ma X H, Zhu B W, Wang H, Hao Y 2022 Adv. Electron. Mater. 8 2101139Google Scholar

    [148]

    Xia Q, Qin Y X, Qiu P L 2022 Adv. Electron. Mater. 8 2200435Google Scholar

    [149]

    Mullani N B, Kumbhar D D, Lee D H, Kwon M J, Cho S y, Oh N, Kim E T, Dongale T D, Nam S Y, Park J H 2023 Adv. Funct. Mater. 33 2300343Google Scholar

    [150]

    Han J S, Le Q V, Choi J, Hong K, Moon C W, Kim T L, Kim H, Kim S Y, Jang H W 2018 Adv. Funct. Mater. 28 1870029Google Scholar

    [151]

    Ye H B, Sun B, Wang Z Y, Liu Z Y, Zhang X N, Tan X H, Shi T L, Tang Z R, Liao G L 2020 J. Mater. Chem. C 8 14155Google Scholar

    [152]

    Liu J Q, Gong J D, Wei H H, Li Y M, Wu H X, Jiang C P, Li Y L, Xu W T 2022 Nat. Commun. 13 7427Google Scholar

    [153]

    Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A 2021 ACS Energy Lett. 6 1087Google Scholar

    [154]

    John R A, Demirağ Y, Shynkarenko Y, Berezovska Y, Ohannessian N, Payvand M, Zeng P, Bodnarchuk M I, Krumeich F, Kara G 2022 Nat. Commun. 13 2074Google Scholar

    [155]

    Murdoch B J, Raeber T J, Zhao Z C, McKenzie D R, McCulloch D G, Partridge J G 2019 Appl. Phys. Lett. 114 2207928Google Scholar

    [156]

    Li M J, Liu H F, Zhao R Y, Yang F S, Chen M R, Zhuo Y, Zhou C W, Wang H, Lin Y F, Yang J J 2023 Nat. Electron. 6 491Google Scholar

    [157]

    Guo J, Wang L Y, Liu Y, Zhao Z P, Zhu E B, Lin Z Y, Wang P Q, Jia C C, Yang S X, Lee S J, Huang W, Huang Y, Duan X F 2020 Matter 2 965Google Scholar

    [158]

    Mao J Y, Wu S, Ding G L, Wang Z P, Qian F S, Yang J Q, Zhou Y, Han S T 2022 Small 18 2106253Google Scholar

    [159]

    Sun L F, Zhang Y S, Han G, Hwang G, Jiang J B, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H J 2019 Nat. Commun. 10 3161Google Scholar

    [160]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130Google Scholar

    [161]

    Sun Y L, Ding Y T, Xie D 2021 Adv. Funct. Mater. 31 2105625Google Scholar

    [162]

    Khot A C, Nirmal K A, Dongale T D, Kim T G 2024 Small 20 2400791Google Scholar

    [163]

    Bean B P 2007 Nat. Rev. Neurosci. 8 451Google Scholar

    [164]

    Wang Y, Gong Y, Huang S M, Xing X C, Lv Z Y, Wang J J, Yang J Q, Zhang G H, Zhou Y, Han S T 2021 Nat. Commun. 12 5979Google Scholar

    [165]

    Wang J J, Lv Z Y, Xing X C, Li X G, Wang Y, Chen M, Pang G J, Qian F S, Zhou Y, Han S T 2020 Adv. Funct. Mater. 30 1909114Google Scholar

    [166]

    Zhong Y N, Tang J S, Li X Y, Gao B, Qian H, Wu H Q 2021 Nat. Commun. 12 408Google Scholar

    [167]

    Lamprecht R, LeDoux J 2004 Nat. Rev. Neurosci. 5 45Google Scholar

    [168]

    Wei H H, Shi R C, Sun L, Yu H Y, Gong J D, Liu C, Xu Z P, Ni Y, Xu J L, Xu W T 2021 Nat. Commun. 12 1068Google Scholar

    [169]

    Tan H W, van Dijken S 2023 Nat. Commun. 14 2169Google Scholar

    [170]

    Zhao M R, Gao B, Tang J S, Qian H, Wu H Q 2020 Appl. Phys. Rev. 7 011301Google Scholar

    [171]

    Wang T Y, Meng J L, Rao M Y, He Z Y, Chen L, Zhu H, Sun Q Q, Ding S J, Bao W Z, Zhou P, Zhang D W 2020 Nano Lett. 20 4111Google Scholar

    [172]

    Upadhyay N K, Sun W, Lin P, Joshi S, Midya R, Zhang X M, Wang Z R, Jiang H, Yoon J H, Rao M Y, Chi M F, Xia Q F, Yang J J 2020 Adv. Electron. Mater. 6 1901411Google Scholar

    [173]

    Wong H S P, Raoux S, Kim S, Liang J, Reifenberg J P, Rajendran B, Asheghi M, Goodson K E 2010 P. IEEE 98 2201Google Scholar

    [174]

    Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthélémy A, Grollier J 2012 Nat. Mater. 11 860Google Scholar

    [175]

    Jung S, Lee H, Myung S, Kim H, Yoon S K, Kwon S W, Ju Y, Kim M, Yi W, Han S, Kwon B, Seo B, Lee K, Koh G H, Lee K, Song Y, Choi C, Ham D, Kim S J 2022 Nature 601 211Google Scholar

    [176]

    Menzel S, Waters M, Marchewka A, Böttger U, Dittmann R, Waser R 2011 Adv. Funct. Mater. 21 4487Google Scholar

    [177]

    Ling H F, Tan K M, Fang Q Y, Xu X S, Chen H, Li W W, Liu Y F, Wang L Y, Yi M D, Huang R, Qian Y, Xie L H, Huang W 2017 Adv. Electron. Mater. 3 1600416Google Scholar

    [178]

    Pei Y F, Li Z Q, Li B, Zhao Y, He H, Yan L, Li X Y, Wang J J, Zhao Z, Sun Y, Zhou Z Y, Zhao J H, Guo R, Chen J S, Yan X B 2022 Adv. Funct. Mater. 32 2203454Google Scholar

    [179]

    Han J Q, Shan X Y, Lin Y, Tao Y, Zhao X N, Wang Z Q, Xu H Y, Liu Y C 2023 Small 19 2207928Google Scholar

    [180]

    Hou W, Azizimanesh A, Dey A, Yang Y, Wang W, Shao C, Wu H, Askari H, Singh S, Wu S M 2024 Nat. Electron. 7 8Google Scholar

    [181]

    Yin J, Zeng F, Wan Q, Li F, Sun Y M, Hu Y D, Liu J L, Li G Q, Pan F 2018 Adv. Funct. Mater. 28 1706927Google Scholar

    [182]

    Xiao T P, Bennett C H, Feinberg B, Agarwal S, Marinella M J 2020 Appl. Phys. Rev. 7 031301Google Scholar

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 任宽, 张握瑜, 王菲, 郭泽钰, 尚大山. 基于忆阻器阵列的下一代储池计算. 物理学报, 2022, 71(14): 140701. doi: 10.7498/aps.71.20220082
    [4] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [5] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [6] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [7] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [8] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [9] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [10] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [11] 黎栋栋, 周武. 二维原子晶体的低电压扫描透射电子显微学研究. 物理学报, 2017, 66(21): 217303. doi: 10.7498/aps.66.217303
    [12] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [13] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [14] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [15] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [16] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [17] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
计量
  • 文章访问数:  2045
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-08-30
  • 上网日期:  2024-09-07
  • 刊出日期:  2024-10-20

/

返回文章
返回