搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻器的数模混合随机数发生器

袁泽世 李洪涛 朱晓华

引用本文:
Citation:

基于忆阻器的数模混合随机数发生器

袁泽世, 李洪涛, 朱晓华

A digital-analog hybrid random number generator based on memristor

Yuan Ze-Shi, Li Hong-Tao, Zhu Xiao-Hua
PDF
导出引用
  • 数字方法实现的混沌随机数发生器存在有限字长效应, 无法保证随机数良好的统计特性. 本文构建了一类包含最少模拟器件的新数模混合系统, 分析了混合系统的非线性动力学行为. 利用现场可编程逻辑门阵列和一阶广义忆阻器实现了复杂混沌映射, 克服了有限字长效应, 构造了稳定的高速混沌随机数发生器, 可以产生100 Gbit/s以上速率的随机数. 研究表明, 数模混合系统的混沌性对元件参数变化不敏感. 混合系统易于集成在图像加密、保密通信和雷达波形设计等应用系统中.
    Random number generator (RNG) plays an important role in many areas including image encryption, secure communication, radar waveform generation, etc. However, existing analog methods for random number (RN) cannot satisfy the demand of bit rate. In the even worse case, system parameters from analog devices are easily distorted by surroundings, leading to a weak system robustness. As a result, researchers start to turn to digital implementation which is stabler and more efficient than analog counterpart to produce RN. However, digital methods suffer dynamical degradation due to the limited word length effect. Though some remedies, such as increasing computing precision, cascading multiple chaotic systems, pseudo-randomly perturbing the chaotic system, switching multiple chaotic systems, and error compensation method, are proposed, the limitations are even inevitable. Recently, some continuous-time chaotic oscillators combined with digital devices were used to realize RNG, and a novel approach was proposed to solve the dynamical degradation of digital chaotic system by coupling the given digital chaotic map with an analog chaotic system, where the analog chaotic system is used to anti-control the given digital chaotic map. But this method requires a whole continuous-time system realized with analog devices which restrict the performance of the integral system.#br#In this paper, a novel digital-analog hybrid chaotic system with only one analog device is constructed for the production of RN. The chosen analog device is a generalized memristor consisting of a diode bridge and a parallel RC filter.#br#Memristor is the fourth fundamental electronic component which has provoked extensive researches since the successful realization by Stan Williams's group at HP Labs in 2008.#br#The paper is arranged as follows. Firstly, a generalized memristor realized by a memristive circuit is introduced and its basic properties are given. Then the block diagram of the digital-analog hybrid system based on a single memristor feedback is depicted, and the mathematical model of the system is derived from the block diagram. Thirdly, the simple Logistic map is applied to the hybrid model and its dynamic behaviors are simulated and compared with those from the ideal Logistic before a more complex two-way coupled saw tooth map is applied to the same simulation, verifying the effectiveness of the proposed hybrid system. Finally, the complex coupled map is applied to the practical circuit producing RN which passes the NIST test suite smoothly.#br#The hybrid system has the following advantages: firstly, the introduction of the analog memristor is able to overcome the dynamical degradation in a digital system, avoiding the limited word length effect essentially. Secondly, the least analog device alleviates the sensibility to parameters and the restriction on bit rate in analog systems, ensuring that the hybrid system is robust. Thirdly, the system structure can be easily integrated into a relevant system. By designing the circuits of the system, the field programmable logic gate array of digital part can be used to realize chaotic map while the single memristor acts as a feedback to the digital part.#br#The experimental results show that the novel hybrid system is insensitive to the variations of circuit parameters and the produced RN is of great randomness, satisfying the practical applications.
      通信作者: 李洪涛, liht@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61401204)、江苏省科技计划支撑类项目(前瞻性联合研究项目)(批准号: BY2015004-03)和江苏省博士后基金(批准号: 1501104C)资助的课题.
      Corresponding author: Li Hong-Tao, liht@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61401204), the Science and Technology Plan Support Project of Jiangsu Province, China (Prospective Joint Research Project) (Grant No. BY2015004-03), and the Postdoctoral Foundation Project of Jiangsu Province, China (Grant No. 1501104C).
    [1]

    Sivakumar T, Venkatesan R 2015 KSII Trans. Internet Inf. Syst. 9 6

    [2]

    van Wiggeren G D, Roy R 1998 Phys. Rev. Lett. 81 3547

    [3]

    Yao J, Chen G R, Yue C, Zhao Y 2002 ICCA the 2002 International Conference on Control and Automation Xiamen, June 19-19, 2014 p152

    [4]

    Gini F, Maio A D, Patton L 2012 Waveform Design and Diversity for Advanced Radar Systems (UK: The Institution of Engineering and Technology) pp31-32

    [5]

    Li W, Reidler I, Aviad Y, Huang Y Y, Song H L, Zhang Y H, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [6]

    Naruse M, Kim S J, Aono M, Hori H, Ohtsu M 2014 Sci. Rep. 4 6039

    [7]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circ. I 47 5

    [8]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [9]

    Li C B, Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450131

    [10]

    Li C B, Sprott J C, Thio W 2014 J. Exp. Theor. Phys. 118 494

    [11]

    Li C B, Sprott J C 2014 Phys. Lett. A 378 178

    [12]

    Bao B C 2013 An Introduction to Chaotic Circuits (Vol. 1) (Beijing: Science Press) pp87-89

    [13]

    Shao S Y, Min F H, Wu X H, Zhang X G 2014 Acta Phys. Sin. 63 060501 (in Chinese) [邵书义, 闵富红, 吴薛红, 张新国 2014 物理学报 63 060501]

    [14]

    Wang G Y, Bao X L, Wang Z L 2008 Chin. Phys. B 17 3596

    [15]

    Deng Y S, Hu H P, Xiong N X, Xiong W, Liu L F 2015 Inform. Sci. 305 146

    [16]

    Ergun S, Özoğuz S 2010 Int. J. Circ. Theor. Appl. 38 1

    [17]

    Gler , Ergn S 2010 ICECS 17th IEEE International Conference Athens, December 12-15, 2010 p1037

    [18]

    Ergn S 2014 Circuits and Systems (APCCAS), 2014 IEEE Asia Pacific Conference Ishigaki, November 17-20, 2014 p217

    [19]

    Hu H P, Deng Y S, Liu L F 2014 Commu. Nonlinear Sci. 19 1970

    [20]

    Yeniçeri R, Yalçın M E 2013 Electron. Lett. 49 543

    [21]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [22]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [23]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [24]

    Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q 2011 Int. J. Bifurc. Chaos 21 2629

    [25]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurc. Chaos 22 1250205

    [26]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [27]

    Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335

    [28]

    Kim H, Sah M P, Yang C J, Cho S, Chua L O 2012 IEEE Trans. Circ. Syst. I 59 2422

    [29]

    Yu D S, Liang Y, Chen H, Iu H H C 2013 IEEE Trans. Circ. Syst. II 60 207

    [30]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [31]

    Bao B C, Yu J J, Hu F W 2014 Int. J. Bifurc. Chaos 24 1450143

    [32]

    Chua L O 2012 Proc. IEEE 100 1920

    [33]

    Tong Q Y, Zeng Y C 2003 Acta Phys. Sin. 52 285 (in Chinese) [童勤业, 曾以成 2003 物理学报 52 285]

  • [1]

    Sivakumar T, Venkatesan R 2015 KSII Trans. Internet Inf. Syst. 9 6

    [2]

    van Wiggeren G D, Roy R 1998 Phys. Rev. Lett. 81 3547

    [3]

    Yao J, Chen G R, Yue C, Zhao Y 2002 ICCA the 2002 International Conference on Control and Automation Xiamen, June 19-19, 2014 p152

    [4]

    Gini F, Maio A D, Patton L 2012 Waveform Design and Diversity for Advanced Radar Systems (UK: The Institution of Engineering and Technology) pp31-32

    [5]

    Li W, Reidler I, Aviad Y, Huang Y Y, Song H L, Zhang Y H, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [6]

    Naruse M, Kim S J, Aono M, Hori H, Ohtsu M 2014 Sci. Rep. 4 6039

    [7]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circ. I 47 5

    [8]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [9]

    Li C B, Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450131

    [10]

    Li C B, Sprott J C, Thio W 2014 J. Exp. Theor. Phys. 118 494

    [11]

    Li C B, Sprott J C 2014 Phys. Lett. A 378 178

    [12]

    Bao B C 2013 An Introduction to Chaotic Circuits (Vol. 1) (Beijing: Science Press) pp87-89

    [13]

    Shao S Y, Min F H, Wu X H, Zhang X G 2014 Acta Phys. Sin. 63 060501 (in Chinese) [邵书义, 闵富红, 吴薛红, 张新国 2014 物理学报 63 060501]

    [14]

    Wang G Y, Bao X L, Wang Z L 2008 Chin. Phys. B 17 3596

    [15]

    Deng Y S, Hu H P, Xiong N X, Xiong W, Liu L F 2015 Inform. Sci. 305 146

    [16]

    Ergun S, Özoğuz S 2010 Int. J. Circ. Theor. Appl. 38 1

    [17]

    Gler , Ergn S 2010 ICECS 17th IEEE International Conference Athens, December 12-15, 2010 p1037

    [18]

    Ergn S 2014 Circuits and Systems (APCCAS), 2014 IEEE Asia Pacific Conference Ishigaki, November 17-20, 2014 p217

    [19]

    Hu H P, Deng Y S, Liu L F 2014 Commu. Nonlinear Sci. 19 1970

    [20]

    Yeniçeri R, Yalçın M E 2013 Electron. Lett. 49 543

    [21]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [22]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [23]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [24]

    Bao B C, Ma Z H, Xu J P, Liu Z, Xu Q 2011 Int. J. Bifurc. Chaos 21 2629

    [25]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurc. Chaos 22 1250205

    [26]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [27]

    Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335

    [28]

    Kim H, Sah M P, Yang C J, Cho S, Chua L O 2012 IEEE Trans. Circ. Syst. I 59 2422

    [29]

    Yu D S, Liang Y, Chen H, Iu H H C 2013 IEEE Trans. Circ. Syst. II 60 207

    [30]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [31]

    Bao B C, Yu J J, Hu F W 2014 Int. J. Bifurc. Chaos 24 1450143

    [32]

    Chua L O 2012 Proc. IEEE 100 1920

    [33]

    Tong Q Y, Zeng Y C 2003 Acta Phys. Sin. 52 285 (in Chinese) [童勤业, 曾以成 2003 物理学报 52 285]

  • [1] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [2] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [3] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [7] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [8] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [9] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [10] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [11] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [12] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [13] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [14] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [15] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响. 物理学报, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  3702
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-12
  • 修回日期:  2015-09-22
  • 刊出日期:  2015-12-05

基于忆阻器的数模混合随机数发生器

  • 1. 南京理工大学电子工程与光电技术学院, 南京 210094
  • 通信作者: 李洪涛, liht@njust.edu.cn
    基金项目: 国家自然科学基金(批准号: 61401204)、江苏省科技计划支撑类项目(前瞻性联合研究项目)(批准号: BY2015004-03)和江苏省博士后基金(批准号: 1501104C)资助的课题.

摘要: 数字方法实现的混沌随机数发生器存在有限字长效应, 无法保证随机数良好的统计特性. 本文构建了一类包含最少模拟器件的新数模混合系统, 分析了混合系统的非线性动力学行为. 利用现场可编程逻辑门阵列和一阶广义忆阻器实现了复杂混沌映射, 克服了有限字长效应, 构造了稳定的高速混沌随机数发生器, 可以产生100 Gbit/s以上速率的随机数. 研究表明, 数模混合系统的混沌性对元件参数变化不敏感. 混合系统易于集成在图像加密、保密通信和雷达波形设计等应用系统中.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回