搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电场-温度双场协同调控的有机小分子仿生忆阻器

李雯 孔令杰 陈叶 周嘉 石伟 仪明东

引用本文:
Citation:

基于电场-温度双场协同调控的有机小分子仿生忆阻器

李雯, 孔令杰, 陈叶, 周嘉, 石伟, 仪明东

Bio-inspired Organic Small-Molecule Memristor Enabled by Synergistic Electric-Thermal Field Modulation

LI Wen, KONG Lingjie, CHEN Ye, ZHOU Jia, SHI Wei, YI Mingdong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 忆阻器驱动的神经形态计算芯片通过在硬件层面模拟生物突触的多维可塑性,实现了高能效并行计算架构,为类脑智能系统提供了新型硬件范式。然而,现有的大部分有机忆阻器在动态突触可塑性调控方面仍面临环境适应性不足的挑战。本文提出了一种基于酞菁钴(CoPc)的双场调控忆阻器,利用外加电场和温度协同耦合控机制,在293–473 K的宽温域内展现出温度弹性特性,临界电压随温度变化而自适应漂移(3–9 V),实现了跨尺度动态突触可塑性的高效调控。在此基础上,构建了由CoPc忆阻器阵列与深度学习模型集成的智能火灾预警系统,有效保障了家用电热器的安全监测需求。该研究不仅提出了环境自适应的忆阻器动态调控策略,也为发展下一代鲁棒、高效的类脑神经形态计算平台奠定了物理与工程基础。
    Memristor-driven neuromorphic computing offers a promising path towards brain-inspired intelligence by emulating the multidimensional plasticity of biological synapses, thereby enabling energy-efficient parallel computation. Nevertheless, the attainment of robust environmental adaptability, particularly in response to fluctuating temperatures, continues to represent a substantial challenge for organic memristors in the context of dynamically modulating synaptic plasticity. In order to address this issue, a bio-inspired cobalt phthalocyanine (CoPc)-based memristor was developed, specifically designed for synergistic electric-thermal field modulation. The device employs the stable planar π-conjugated system of CoPc molecules and exploits dynamic oxygen vacancy (OV) migration at the CoPc/AlOx interface. A comprehensive electrical characterisation was conscucted, incorporating X-ray photoelectron spectroscopy (XPS), in-situ Raman spectroscopy, and temperature-dependent electrical measurements across a wide range (293–473 K). This was supported by physical modelling (SCLC, FNT, Arrhenius) to elucidate the underlying mechanisms. Evidence suggests that the apparatus is capable of effectively replicating essential synaptic plasiticy, encompassing short-term potentiation/depression (STP/STD), paired-pulse facilitation/depression (PPF/PPD), under the regulation of an electric field. The index rose to 151%, indicating a significant increase. Spike-amplitude-dependent plasticity (SADP, 45% weight increase), Spike-timing-dependent plasticity (STDP, ΔW = ± 90%), and learning-forgetting-relearning dynamics were revealed, unveiling cumulative memory effects linked to OV transport. It is crucial to note that the device demonstrates exceptional temperature resilience over the range of 293–473 K, characterised by a linear adaptive shift in its critical voltage (VCritical) from 8.7 V at 293 K to 4.5 V (dVCritical /dT = 0.023 V/K). Physical analysis attributes this adaptive threshold and stable operation to a dual-field synergistic mechanism based on trap-assisted carrier transport, elevated temperature thermally activates carriers, reducing the effective barrier for trap escape and OV migration activation energy (Ea = 0.073–0.312 eV), facilitating conduction via Fowler-Nordheim tunneling (FNT) at lower electric fields. Conversely, lower temperatures necessitate higher electric fields to enhance trap ionization efficiency via the Poole-Frenkel effect, compensating for reduced thermal energy. The exploitation of the linear VCritical-T relationship as a sensitive temperature transduction mechanism was validated through the construction of an intelligent fire warning system. This study incorporated a 6 × 6 CoPc memristor array integrated within household heaters, along with a deep learning model (20 × 16 + 16 × 8 + 8 × 1 fully connected network). The resultant model demonstrated a high abnormal temperature recognition accuracy of 96.54%. This work establishes a novel paradigm for environmentally adaptive neuromorphic devices through molecular/interface design and synergistic multi-field modulation, providing a physical realization of temperature-elastic synaptic operation and demonstrating its practical viability for robust next-generation brain-inspired computing platforms.
  • [1]

    Carlos E, Branquinho R, Martins R, Kiazadeh A, Fortunato E 2020 Adv. Mater. 332004328

    [2]

    Hong X, Loy D J, Dananjaya P A, Tan F, Ng C, Lew W 2018 J. Mater. Sci. 538720

    [3]

    Liao K H, Lei P X, Tu M L, Luo S W, Jiang T, Jie W J, Hao J H 2021 ACS Appl. Mater. Interfaces 1332606

    [4]

    Babacan Y, Kaçar F 2017 AEU - Int. J. Electron. Commun. 7316

    [5]

    Campbell K A, Drake K T, Barney Smith E H 2016 Front. Bioeng. Biotechnol. 497

    [6]

    Daddinounou S, Vatajelu E-I 2024 Front. Neurosci. 181387339

    [7]

    Go S-X, Lim K-G, Lee T-H, Loke D K 2024 Small Sci. 42300139

    [8]

    Li Z Y, Li Z S, Tang W, Yao J P, Dou Z P, Gong J J, Li Y F, Zhang B N, Dong Y X, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X S, Yang R G 2024 Nat. Commun. 157275

    [9]

    Lu J L, Sun F, Zhou G D, Duan S K, Hu X F 2024 IEEE Sens. J. 242967

    [10]

    Zhang J L, Li X J, Xiao P D, Wei Z M, Hong Q H 2024 IEEE Trans. Circuits Syst. I Regular Papers 713228

    [11]

    Huang Y F, Hopkins R, Janosky D, Chen Y C, Chang Y F, Lee J C 2022 IEEE Trans. Electron Devices 696102

    [12]

    Li J Y, Qian Y Z, Li W, Yu S C, Ke Y X, Qian H W, Lin Y H, Hou C H, Shyue J J, Zhou J, Chen Y, Xu J P, Zhu J T, Yi M D, Huang W 2023 Adv. Mater. 352209728

    [13]

    Naqi M, Yu Y, Cho Y, Kang S, Khine M T, Lee M, Kim S 2024 Mater. Today Nano 27100491

    [14]

    Fan Z Y, Tang Z H, Fang J L, Jiang Y P, Liu Q X, Tang X G, Zhou Y C, Gao J 2024 Nanomaterials 14583

    [15]

    He Y, Farmakidis N, Aggarwal S, Dong B, Lee J S, Wang M, Zhang Y, Parmigiani F, Bhaskaran H 2024 Nano Lett. 2416325

    [16]

    Zhu Y B, Wu C X, Xu Z W, Liu Y, Hu H L, Guo T L, Kim T W, Chai Y, Li F S 2021 Nano Lett. 216087

    [17]

    Haghshenas Gorgabi F, Morant-Miñana M C, Zafarkish H, Abbaszadeh D, Asadi K 2023 J. Mater. Chem. C 111690

    [18]

    Hajtó D, Rák Á, Cserey G 2019 Materials 123573

    [19]

    Li H Z, Gao Q, Gao J, Huang J S, Geng X L, Wang G X, Liang B, Li X H, Wang M, Xiao Z S, Chu P K, Huang A P 2023 ACS Appl. Mater. Interfaces 1546449

    [20]

    Sun Y M, Li B X, Liu M, Zhang Z K 2024 Mater. Today Adv. 23100515

    [21]

    Tian L, Wang Y Y, Shi L P, Zhao R 2020 ACS Appl. Electron. Mater. 23633

    [22]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63187301(in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳2008物理学报63187301]

    [23]

    Baranowski M, Sachser R, Marinković B P, Ivanović S D, Huth M 2022 Nanomaterials 124145

    [24]

    Mayer S F, Mitsioni M, van den Heuvel L, Robin P, Ronceray N, Marcaida M J, Abriata L A, Krapp L F, Anton J S, Soussou S, Jeanneret-Grosjean J, Fulciniti A, Moller A, Vacle S, Feletti L, Brinkerhoff H, Laszlo A H, Gundlach J H, Emmerich T, Dal Peraro M, Radenovic A 2025 BioRxiv 26615172

    [25]

    Rodriguez N, Maldonado D, Romero F J, Alonso F J, Aguilera A M, Godoy A, Jimenez-Molinos F, Ruiz F G, Roldan J B 2019 Materials 123734

    [26]

    Wang S X, Dong X Q, Xiong Y X, Sha J, Cao Y G, Wu Y P, Li W, Yin Y, Wang Y C 2021 Adv. Electron. Mater. 72100014

    [27]

    Xu G H, Zhang M L, Mei T T, Liu W C, Wang L, Xiao K 2024 ACS Nano 1819423

    [28]

    Li J Y, Qian Y Z, Ke Y X, Li W, Huang W, Yi M D 2023 ACS Appl. Electron. Mater. 56813

    [29]

    Zhou J, Li W, Chen Y, Lin Y H, Yi M D, Li J Y, Qian Y Z, Guo Y, Cao K Y, Xie L H, Ling H F, Ren Z J, Xu J P, Zhu J T, Yan S K, Huang W 2020 Adv. Mater. 332006201

    [30]

    Wang Z Y, Wang L Y, Wu Y M, Bian L Y, Nagai M, Jv R, Xie L H, Ling H F, Li Q, Bian H Y, Yi M D, Shi N E, Liu X G, Huang W 2021 Adv. Mater. 332104370

    [31]

    Pasquini C, D’Amario L, Zaharieva I, Dau H 2020 J. Chem. Phys. 15219

    [32]

    Bian L Y, Xie M, Chong H, Zhang Z W, Liu G Y, Han Q S, Ge J Y, Liu Z, Lei Y, Zhang G W, Xie L H 2022 Chin. J. Chem. 402451

    [33]

    Chen J B, Jia S J, Gao L Y, Xu J W, Yang C Y, Guo T T, Zhang P, Chen J T, Wang J, Zhao Y, Zhang X Q, Li Y 2024 Colloids Surf. A 689133673

    [34]

    Kim H, Kim M, Lee A, Park H L, Jang J, Bae J H, Kang I M, Kim E S, Lee S H 2023 Adv. Sci. 102300659

    [35]

    Qian Y Z, Li J Y, Li W, Hou C H, Feng Z Y, Shi W, Yi M 2024 J. Mater. Chem. C 129669

    [36]

    Shakib M A, Gao Z, Lamuta C 2023 ACS Appl. Electron. Mater. 54875

    [37]

    Zeng J M, Chen X H, Liu S Z, Chen Q L, Liu G 2023 Nanomaterials 13803

    [38]

    Shao N, Zhang S B, Shao S Y 2019 Acta Phys. Sin. 68338(in Chinese) [邵楠, 张盛兵, 邵舒渊2019物理学报68338]

    [39]

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73207302(in Chinese) [贡以纯,明建宇,吴思齐,仪明东,解令海,黄维,凌海峰2024物理学报73207302]

    [40]

    Hu W J, Fan Z, Mo L Y, Lin H P, Li M X, Li W J, Ou J, Tao R Q, Tian G, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2025 ACS Appl. Mater. Interfaces 179595

    [41]

    Ki S, Chen M Z, Liang X G 2023 IEEE Nanotechnol. Mag. 1724

    [42]

    Yun S, Mahata C, Kim M-H, Kim S 2022 Appl. Surf. Sci. 579152164

    [43]

    Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2012 IEEE Trans. Neural Netw. Learn. Syst. 23565

    [44]

    Chen Z J, Zhang J D, Wen S C, Li Y, Hong Q H 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 291095

    [45]

    Lee Y P 2017 IEEE Trans. Syst. Man Cybern. Syst. 473386

    [46]

    Li M, Hong Q H, Wang X P 2021 Neural Comput. Appl. 34319

    [47]

    Patel M, Gosai J, Patel P, Roy M, Solanki A 2024 ACS Omega 946841

    [48]

    Bing Z S, Baumann I, Jiang Z Y, Huang K, Cai C X, Knoll A 2019 Front. Neurorobot. 1318

    [49]

    Pedroni B U, Joshi S, Deiss S R, Sheik S, Detorakis G, Paul S, Augustine C, Neftci E O, Cauwenberghs G 2019 Front. Neurosci. 13357

    [50]

    Quintana F M, Perez-Peña F, Galindo P L 2022 Neural Comput. Appl. 3415649

    [51]

    Mikaitis M, Pineda García G, Knight J C, Furber S B 2018 Front. Neurosci. 12105

    [52]

    Wang M L, Wang J S 2015 Acta Phys. Sin. 6410

    [53]

    Wang Z X, Yu N G, Liao Y S 2023 Electronics 123992

    [54]

    Kim S I, Lee Y, Park M H, Go G T, Kim Y H, XU W T, Lee H D, Kim H, Seo D G, Lee W, Lee T W 2019 Adv. Electron. Mater. 51900008

    [55]

    Frenkel J 1938 Phys. Rev. 54647

    [56]

    He D W, Qiao J S, Zhang L L, Wang J Y, Lan T, Qian J, Li Y, Shi Y, Chai Y, Lan W, Ono L K, Qi Y B, Xu J B, Ji W, Wang X R 2017 Sci. Adv. 3 e1701186

    [57]

    Takagi K, Nagase T, Kobayashi T, Naito H 2016 Org. Electron. 3265

    [58]

    Sturman B, Podivilov E, Gorkunov M 2003 Phys. Rev. Lett. 91176602

    [59]

    Xie Y L, Kundu S C, Fan S, Zhang Y P 2024 Sci. China Mater. 673675

    [60]

    Cao L J, Luo Y H, Yao J P, Ge X, Luo M Y, Li J Q, Cheng X M, Yang R, Miao X S 2024 J. Mater. Chem. C 1219555

    [61]

    Guo T, Ge J W, Jiao Y X, Teng Y C, Sun B, Huang W, Asgarimoghaddam H, Musselman K P, Fang Y, Zhou Y N, Wu Y A 2023 Mater. Horiz. 101030

    [62]

    Li J C, Liu Z C, Xia Y H, Liu X, Yang H X, Ma Y X, Wang Y L 2025 Adv. Funct. Mater. 352416635

    [63]

    Ganaie M M, Kumar A, Shringi A K, Sahu S, Saliba M, Kumar M 2024 Adv. Funct. Mater. 342405080

    [64]

    Sun Y M, Liu M, Li B X 2024 Small 202404177

    [65]

    Ouyang G, Wang Y L, Su J, Ren M C, Zhang M H, Cao M H 2025 Nano Energy 137110778

    [66]

    Liu Z H, Cheng P P, Li Y F, Kang R Y, Zhang Z Q, Zuo Z Y, Zhao J 2021 ACS Appl. Mater. Interfaces 1358885

    [67]

    Li Z Y, Li Z S, Tang W, Yao J P, Dou Z P, Gong J J, Li Y F, Zhang B N, Dong Y X, Xia J, Sun L, Jiang P, Cao X, Yang R, Miao X S, Yang R G 2024 Nat. Commun. 157275

    [68]

    Shen D H, Zhou J, Chen Y, Kong L J, Li W, Shi W, Yi M D 2025 J. Phys. D: Appl. Phys. 58245107

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, doi: 10.7498/aps.73.20231211
    [2] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, doi: 10.7498/aps.73.20231972
    [3] 贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰. 面向类脑计算的低电压忆阻器研究进展. 物理学报, doi: 10.7498/aps.73.20241022
    [4] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, doi: 10.7498/aps.72.20222013
    [5] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, doi: 10.7498/aps.71.20220226
    [6] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, doi: 10.7498/aps.70.20210116
    [7] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, doi: 10.7498/aps.69.20200617
    [8] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, doi: 10.7498/aps.68.20191023
    [9] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, doi: 10.7498/aps.68.20190808
    [10] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, doi: 10.7498/aps.68.20181577
    [11] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, doi: 10.7498/aps.68.20191262
    [12] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, doi: 10.7498/aps.68.20182306
    [13] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, doi: 10.7498/aps.66.030502
    [14] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, doi: 10.7498/aps.65.128503
    [15] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, doi: 10.7498/aps.64.240503
    [16] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, doi: 10.7498/aps.64.148501
    [17] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [18] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, doi: 10.7498/aps.63.187301
    [19] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, doi: 10.7498/aps.62.190506
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-08

/

返回文章
返回