搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于感存算一体化系统的多模调控忆阻器

张宇琦 王俊杰 吕子玉 韩素婷

引用本文:
Citation:

应用于感存算一体化系统的多模调控忆阻器

张宇琦, 王俊杰, 吕子玉, 韩素婷

Multimode modulated memristors for in-sensor computing system

Zhang Yu-Qi, Wang Jun-Jie, Lü Zi-Yu, Han Su-Ting
PDF
HTML
导出引用
  • 交互式人工智能系统的构建依赖于高性能人工感知系统和处理系统的开发. 传统的感知处理系统传感器、存储器和处理器在空间上是分离的, 感知数据信息的频繁传输和数据格式转换造成了系统的长延时与高能耗. 受生物感知神经系统的启发, 耦合感知、存储、计算功能的感存算一体化技术为未来感知处理领域提供了可靠的技术方案. 具有感知光、压力、化学物质等能力的忆阻器是应用于感存算一体系统的理想器件. 本文从器件层面综述了应用于感存算一体化系统忆阻器的研究方向和研究进展, 包括视觉、触觉、嗅觉、听觉和多感官耦合类别, 并在器件、工艺与集成、电路系统架构和算法方面指出现阶段的挑战与展望, 为未来神经形态感存算一体化系统的发展提供可行的研究方向.
    To develop future interactive artificial intelligence system, the construction of high-performance human perception system and processing system is vital. In a traditional perceptual and processing system, sensors, memory and processing units are physically separated because of their different functions and manufacture conditions, which results in frequent shuttling and format transformation of data resulting in long time delay and high energy consumption. Inspired by biological sensory nervous system, one has proposed the concept of in-sensor computing system in which the basic unit integrates sensor, storage and computing functions in the same place. In-sensor computing technology can provide a reliable technical scheme for the area of sensory processing. Artificial memristive synapse capable of sensing light, pressure, chemical substances, etc. is one type of ideal device for the application of in-sensor computing system. In this paper, at the device level, recent progress of sensory memristive synapses applied to in-sensor computing systems are reviewed, including visual, olfactory, auditory, tactile and multimode sensation. This review points out the challenge and prospect from the aspects of device, fabrication, integrated circuit system architecture and algorithms, aiming to provide possible research direction for future development of in-sensor computing system.
      通信作者: 韩素婷, sutinghan@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62122055, 62074104, 61974093)资助的课题.
      Corresponding author: Han Su-Ting, sutinghan@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62122055, 62074104, 61974093).
    [1]

    Lee Y, Lee T W 2019 Acc. Chem. Res. 52 964Google Scholar

    [2]

    Zeng M, He Y, Zhang C, Wan Q 2021 Front. Neurosci. 15 690950Google Scholar

    [3]

    Wan C, Cai P, Wang M, Qian Y, Huang W, Chen X 2020 Adv. Mater. 32 1902434Google Scholar

    [4]

    Zhou F, Chai Y 2020 Nat. Electron. 3 664Google Scholar

    [5]

    Wan T, Ma S, Liao F, Fan L, Chai Y 2022 Sci. China Inf. Sci. 65 141401Google Scholar

    [6]

    廖付友, 柴扬 2021 物理 50 378Google Scholar

    Liao F Y, Chai Y 2021 Physics 50 378Google Scholar

    [7]

    Kim Y, Chortos A, Xu W, Liu Y, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T W 2018 Science 360 998Google Scholar

    [8]

    Shi W, Cao J, Zhang Q, Li Y, Xu L 2016 IEEE Internet Things 3 637Google Scholar

    [9]

    El-Atab N 2021 Phys. Status Solidi A 219 2100528

    [10]

    Phong Truong T, Toan Le H, Thi Nguyen T 2020 J. Phys. : Conf. Ser. 1432 012068Google Scholar

    [11]

    Li Y, Wang Z, Midya R, Xia Q, Yang J J 2018 J. Phys. D:Appl. Phys. 51 503002Google Scholar

    [12]

    Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q, Yang J J 2020 Nat. Rev. Mater. 5 173Google Scholar

    [13]

    Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E 2020 Nat. Nanotechnol. 15 529Google Scholar

    [14]

    Ielmini D, Wong H S P 2018 Nat. Electron. 1 333Google Scholar

    [15]

    Wang J, Lv Z, Xing X, Li X, Wang Y, Chen M, Pang G, Qian F, Zhou Y, Han S T 2020 Adv. Funct. Mater. 30 1909114Google Scholar

    [16]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [17]

    Zhang Y, Wang Z, Zhu J, Yang Y, Rao M, Song W, Zhuo Y, Zhang X, Cui M, Shen L, Huang R, Yang J J 2020 Appl. Phys. Rev. 7 011308Google Scholar

    [18]

    Sun K, Chen J, Yan X 2020 Adv. Funct. Mater. 31 2006773

    [19]

    Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han S T 2020 Chem. Rev. 120 3941Google Scholar

    [20]

    李锟, 曹荣荣, 孙毅, 刘森, 李清江, 徐晖 2019 微纳电子与智能制造 1 87

    Li K, Cao R, Sun Y, Liu S, Li Q, Xu H 2019 Micro/nano Electronics and Intelligent Manufacturing 1 87

    [21]

    Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118Google Scholar

    [22]

    Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875Google Scholar

    [23]

    Carrara S 2021 IEEE Sens. J. 21 12370Google Scholar

    [24]

    张章, 李超, 韩婷婷, 许傲, 程心, 刘钢, 解光军 2021 电子与信息学报 43 1498Google Scholar

    Zhang Z, Li C, Han T T, Xu A, Cheng X, Liu G, Xie G J 2021 Journal of Electronics and Information Technology 43 1498Google Scholar

    [25]

    Zhu Y, Zhu Y, Mao H, He Y, Jiang S, Zhu L, Chen C, Wan C, Wan Q 2021 J. Phys. D:Appl. Phys. 55 053002

    [26]

    Tripathy A, Nine M J, Losic D, Silva F S 2021 Mater. Sci. Eng. R. Rep. 146 100647Google Scholar

    [27]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [28]

    Zhao M, Gao B, Tang J, Qian H, Wu H 2020 Appl. Phys. Rev. 7 011301Google Scholar

    [29]

    Zhang Y, Mao G Q, Zhao X, Li Y, Zhang M, Wu Z, Wu W, Sun H, Guo Y, Wang L, Zhang X, Liu Q, Lv H, Xue K H, Xu G, Miao X, Long S, Liu M 2021 Nat. Commun. 12 7232Google Scholar

    [30]

    Kim S J, Kim S B, Jang H W 2021 Science 24 101889

    [31]

    Tsai S C, Lo H Y, Huang C Y, Wu M C, Tseng Y T, Shen F C, Ho A Y, Chen J Y, Wu W W 2021 Adv. Electron. Mater. 7 2100605Google Scholar

    [32]

    Arndt B, Borgatti F, Offi F, Phillips M, Parreira P, Meiners T, Menzel S, Skaja K, Panaccione G, MacLaren D A, Waser R, Dittmann R 2017 Adv. Funct. Mater. 27 1702282Google Scholar

    [33]

    Herpers A, Lenser C, Park C, Offi F, Borgatti F, Panaccione G, Menzel S, Waser R, Dittmann R 2014 Adv. Mater. 26 2730Google Scholar

    [34]

    Le Gallo M, Sebastian A 2020 J. Phys. D: Appl. Phys. 53 213002Google Scholar

    [35]

    Sebastian A, Le Gallo M, Eleftheriou E 2019 J. Phys. D:Appl. Phys. 52 443002Google Scholar

    [36]

    Zhang C, Chen Y, Yi M, Zhu Y, Li T, Liu L, Wang L, Xie L, Huang W 2018 Sci. Sin. Inf. 48 115Google Scholar

    [37]

    Ho V M, Lee J A, Martin K C 2011 Science 334 623Google Scholar

    [38]

    Chen S, Lou Z, Chen D, Shen G 2018 Adv. Mater. 30 1705400Google Scholar

    [39]

    Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [40]

    Zhang L, Yu H, Xiao C, Si J, Xu H, Zhu W, Wang L 2020 Adv. Electron. Mater. 7 2000945

    [41]

    Wang Y, Gong Y, Yang L, Xiong Z, Lv Z, Xing X, Zhou Y, Zhang B, Su C, Liao Q, Han S T 2021 Adv. Funct. Mater. 31 2100144Google Scholar

    [42]

    Yang L, Singh M, Shen S W, Chih K Y, Liu S W, Wu C I, Chu C W, Lin H W 2020 Adv. Funct. Mater. 31 2008259

    [43]

    Vasileiadis N, Ntinas V, Sirakoulis G C, Dimitrakis P 2021 Materials 14 5223Google Scholar

    [44]

    Wang T Y, Meng J L, Li Q X, He Z Y, Zhu H, Ji L, Sun Q Q, Chen L, Zhang D W 2021 Nano Energy 89 106291Google Scholar

    [45]

    Li H, Jiang X, Ye W, Zhang H, Zhou L, Zhang F, She D, Zhou Y, Han S T 2019 Nano Energy 65 104000Google Scholar

    [46]

    Yang X, Xiong Z, Chen Y, Ren Y, Zhou L, Li H, Zhou Y, Pan F, Han S T 2020 Nano Energy 78 105246Google Scholar

    [47]

    Ham S, Choi S, Cho H, Na S I, Wang G 2019 Adv. Funct. Mater. 29 1806646Google Scholar

    [48]

    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 ACS Nano 13 2634Google Scholar

    [49]

    Zhao L, Fan Z, Cheng S, Hong L, Li Y, Tian G, Chen D, Hou Z, Qin M, Zeng M, Lu X, Zhou G, Gao X, Liu J M 2019 Adv. Electron. Mater. 6 1900858

    [50]

    Kumar M, Lim J, Kim S, Seo H 2020 ACS Nano 14 14108Google Scholar

    [51]

    Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W, Li F 2020 Adv. Funct. Mater. 30 1908901Google Scholar

    [52]

    Wu Z, Lu J, Shi T, Zhao X, Zhang X, Yang Y, Wu F, Li Y, Liu Q, Liu M 2020 Adv. Mater. 32 2004398Google Scholar

    [53]

    Lin Y, Wang Z, Zhang X, Zeng T, Bai L, Kang Z, Wang C, Zhao X, Xu H, Liu Y 2020 NPG Asia Mater. 12 64Google Scholar

    [54]

    Huang W, Hang P, Wang Y, Wang K, Han S, Chen Z, Peng W, Zhu Y, Xu M, Zhang Y, Fang Y, Yu X, Yang D, Pi X 2020 Nano Energy 73 104790Google Scholar

    [55]

    John R A, Acharya J, Zhu C, Surendran A, Bose S K, Chaturvedi A, Tiwari N, Gao Y, He Y, Zhang K K, Xu M, Leong W L, Liu Z, Basu A, Mathews N 2020 Nat. Commun. 11 3211Google Scholar

    [56]

    Shan X, Zhao C, Wang X, Wang Z, Fu S, Lin Y, Zeng T, Zhao X, Xu H, Zhang X, Liu Y 2021 Adv. Sci. 9 2104632

    [57]

    Liu Y, Wu L, Liu Q, Liu L, Ke S, Peng Z, Shi T, Yuan X, Huang H, Li J, Ye C, Chu P K, Wang J, Yu X F 2021 Adv. Funct. Mater. 32 2110900

    [58]

    Hu G, An H, Xi J, Lu J, Hua Q, Peng Z 2021 Nano Energy 89 106282Google Scholar

    [59]

    Kumar M, Lim J, Seo H 2021 Nano Energy 89 106471Google Scholar

    [60]

    Wang S, Wang C Y, Wang P, Wang C, Li Z A, Pan C, Dai Y, Gao A, Liu C, Liu J, Yang H, Liu X, Cheng B, Chen K, Wang Z, Watanabe K, Taniguchi T, Liang S J, Miao F 2021 Natl. Sci. Rev. 8 nwaa172Google Scholar

    [61]

    Zhang C, Ye W B, Zhou K, Chen H Y, Yang J Q, Ding G, Chen X, Zhou Y, Zhou L, Li F, Han S T 2019 Adv. Funct. Mater. 29 1808783Google Scholar

    [62]

    Kumar M, Singh R, Kang H, Kim S, Seo H 2020 Nano Energy 73 104756Google Scholar

    [63]

    Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay N K, Fang Y, Kiani F, Rao M, Yang Y, Xia Q, Liu Q, Liu M, Yang J J 2020 Nat. Commun. 11 51Google Scholar

    [64]

    Tan H, Tao Q, Pande I, Majumdar S, Liu F, Zhou Y, Persson P O A, Rosen J, van Dijken S 2020 Nat. Commun. 11 1369Google Scholar

    [65]

    Kim S H, Baek G W, Yoon J, Seo S, Park J, Hahm D, Chang J H, Seong D, Seo H, Oh S, Kim K, Jung H, Oh Y, Baac H W, Alimkhanuly B, Bae W K, Lee S, Lee M, Kwak J, Park J H, Son D 2021 Adv. Mater. 33 2104690Google Scholar

    [66]

    Xia Q, Qin Y, Zheng A, Qiu P, Zhang X 2021 Adv. Mater. Interfaces 8 2101068Google Scholar

    [67]

    Kumar M, Park J Y, Seo H 2021 Small Methods 5 2100566Google Scholar

    [68]

    Wang D, Wang L, Ran W, Zhao S, Yin R, Yan Y, Jiang K, Lou Z, Shen G 2020 Nano Energy 76 105109Google Scholar

    [69]

    Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74Google Scholar

    [70]

    Vidiš M, Plecenik T, Moško M, Tomašec S, Roch T, Satrapinskyy L, Grančič B, Plecenik A 2019 Appl. Phys. Lett. 115 093504Google Scholar

    [71]

    Lee D, Yun M J, Kim K H, Kim S, Kim H D 2021 ACS Sens. 6 4217Google Scholar

    [72]

    Ban C, Min X, Xu J, Xiu F, Nie Y, Hu Y, Zhang H, Eginligil M, Liu J, Zhang W, Huang W 2021 Adv. Mater. Technol. 6 2100366Google Scholar

    [73]

    Wang T, Huang H M, Wang X X, Guo X 2021 InfoMat. 3 804Google Scholar

    [74]

    Gao Z, Chen S, Li R, Lou Z, Han W, Jiang K, Qu F, Shen G 2021 Nano Energy 86 106078Google Scholar

    [75]

    Lu Q, Sun F, Dai Y, Wang Y, Liu L, Wang Z, Wang S, Zhang T 2021 Nano Res. 15 423

    [76]

    Vanarse A, Osseiran A, Rassau A 2016 Front. Neurosci. 10 115

    [77]

    Wang L, Wang Z, Lin J, Yang J, Xie L, Yi M, Li W, Ling H, Ou C, Huang W 2016 Sci. Rep. 6 35273Google Scholar

    [78]

    Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R, Yang H 2018 Nano Lett. 18 3229Google Scholar

    [79]

    Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S, Ielmini D 2018 Sci. Adv. 4 eaat4752Google Scholar

    [80]

    Rahman M A, Walia S, Naznee S, Taha M, Nirantar S, Rahman F, Bhaskaran M, Sriram S 2020 Adv. Intell. Syst. 2 2000094Google Scholar

    [81]

    Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S 2021 Nat. Commun. 12 1120Google Scholar

    [82]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [83]

    Mohamad Hadis N S, Abd Manaf A, Ngalim S H, Herman S H 2017 Sens. Bio-Sens. Res. 14 21Google Scholar

    [84]

    Pawar A V, Kanapally S S, Kadam K D, Patil S L, Dongle V S, Jadhav S A, Kim S, Dongale T D 2019 J. Mater. Sci. : Mater. Electron. 30 11383Google Scholar

    [85]

    Abdul Hadi S, Humood K M, Abi Jaoude M, Abunahla H, Shehhi H F A, Mohammad B 2019 Sci. Rep. 9 9983Google Scholar

    [86]

    Song Y G, Suh J M, Park J Y, Kim J E, Chun S Y, Kwon J U, Lee H, Jang H W, Kim S, Kang C Y, Yoon J H 2021 Adv. Sci. 9 2103484

  • 图 1  (a) 传统的感知处理系统架构; (b) 人体五感示意图; (c) 感存算一体化系统架构; (d) 低级感官处理功能; (e) 用于神经网络计算的可重构响应度的感存算一体单元阵列; (f)感存算一体化技术的应用领域

    Fig. 1.  (a) Traditional architecture of sensing and processing; (b) schematic of human sensory system; (c) in-sensor computing architecture; (d) low-level sensory processing functions; (e) in-sensor computing units with reconfigurable responsivity for neural network computing; (f) application fields of in-sensor computing technology.

    图 2  (a) 两端忆阻器示意图; (b) 数字型忆阻器的典型电压-电流曲线; (c) 模拟型忆阻器的典型电压-电流曲线; (d) 忆阻器常见机理; (e) 数字型和模拟型忆阻器的应用

    Fig. 2.  (a) Schematic of a two-terminal memristor; (b) typical I-V curve of digital memristor; (c) typical I-V curve of analog memristor; (d) three main mechanisms of memristors; (e) application of analog and digital memristor.

    图 3  (a) 人类视觉系统示意图; (b)突触、神经元和制备的忆阻器示意图; (c)大脑STP和LTP行为的示意图; (d) 人工突触在红光和紫外光刺激下电流响应对比图[42]; (e) 可见光/紫外光调控突触可塑性示意图; (f) 人工突触在可见光脉冲刺激下的电流响应; (g) 人工突触在紫外光脉冲刺激下的电流响应; (h) 可见光调控的突触STDP功能模拟; (i) 基于忆阻器阵列的视觉感存算一体系统低级处理和高级处理功能示意图[56]

    Fig. 3.  (a) Schematic of the human visual system; (b) schematic diagrams of the synapse, neuron, and two-terminal memristor; (c) schematic diagram of STP and LTP behavior; (d) comparison of current response of artificial synapses under red light and ultraviolet light[42]; (e) diagram of synaptic plasticity regulated by visible/ultraviolet light; (f) current response of artificial synapses stimulated by visible light pulses; (g) current response of artificial synapses stimulated by ultraviolet light pulses; (h) simulation of synaptic STDP function regulated by visible light; (i) schematic diagram of low-level and high-level processing functions of visual in-sensor computing system based on memristor array[56].

    图 4  (a) 生物触觉感知系统示意图; (b) 压力传感器和Nafion忆阻器集成的人工触觉感知系统; (c) 触觉系统在不同按压力度下的电流响应图; (d) 对采集到的数据进行K邻近分类网络算法处理[61]; (e) 集成触觉传感器和HfO2基忆阻器的触觉感觉神经; (f) “SOS”和“TEAM”莫斯电码信号刺激人工触觉神经元的电流响应[66]; (g) MXene传感器、ADC-LED电路、光电忆阻器构成的神经系统; (h) 光调控的突触PPF模拟[64]

    Fig. 4.  (a) Schematic illustration of the biological haptic perception system; (b) artificial haptic perception system consisting of pressure sensor and Nafion-based memristor; (c) current response of tactile system at different pressing magnitudes; (d) schematic of processing by K-nearest neighbors algorithm[61]; (e) tactile sensory nerve consisting of haptic sensor and HfO2-based memristor; (f) current response of artificial tactile neuron under “SOS” and “TEAM” Morse code signals stimulus[66]; (g) artificial afferent nerve system integrating MXene sensor, ADC-LED circuit and optoelectronic memristor; (h) simulation of photo-tunable synaptic PPF behavior[64].

    图 5  (a) 生物嗅觉感知系统示意图; (b) 人工嗅觉推理系统原理图; (c) W/WO3/PEDOT:PSS/Pt忆阻器在脉冲下刺激下的电流相应; (d) 所用忆阻器突触真实和理想的电导调制曲线[73]; (e) 气敏忆阻器机理示意图; (f) SnO2气敏忆阻器对不同浓度一氧化氮气体的电流响应; (g) 由Ta2O5, HfO2和SnO2忆阻器组成的气体感知阵列[71]

    Fig. 5.  (a) Schematic of biological olfactory system; (b) schematic of artificial olfactory inference system; (c) current response of memristor with W/WO3/PEDOT:PSS/Pt structure under pulse stimulus; (d) experimental and ideal conductance modulation curves of the memristive synapse[73]; (e) schematic of the gas sensing mechanism; (f) current response of SnO2 based gas-sensing memristor depending on NO gas concentration; (g) schematic diagram of the gas-sensing array consisting of Ta2O5, HfO2, and SnO2-based memristors[71].

    图 6  (a)柔性MXene-ZnO忆阻器示意图; (b)器件在不同紫外光照强度下的I-V曲线; (c) MXene-ZnO忆阻器受光和湿度调控的电流分布图; (d) 应用光和电脉冲实现突触LTP和LTD行为的模拟; (e) 基于光和湿度调控的忆阻器突触搭建的神经网络示意图[41]; (f) 多模脉冲感知处理系统工作流程图[81]

    Fig. 6.  (a) Schematic structure of the flexible MXene-ZnO-based memristive device; (b) I-V curves of device under UV irradiance with different intensities; (c) current profile of MXene-ZnO memristor regulated by light and humidity; (d) simulation of synaptic LTP and LTD behaviors by UV light and electrical pulses; (e) schematic of neural network based on MXene-ZnO-based memristive synapses[41]; (f) operational diagram of the multimode spiking perception and processing system[81].

    表 1  应用于感存算一体化系统的忆阻器的性能比较

    Table 1.  Performance comparison of memristors applied to in-sensor computing systems.

    忆阻器结构响应类型阻变机理开启/关闭
    电压/V
    开关比PSCSTPLTP具体实现功能文献
    视觉Ag/CH3NH3PbI3 (OHP)/ITO碘空位导电细丝0.32/–0.521×104数字识别分类[47]
    Ni/Al2O3/AuUV金属导电细丝1.7/–1.61×102图像记忆[38]
    Pd/MoOx/ITOUV界面效应–2.1340图像预处理[39]
    Ag nanowire/TiO2visible light (vis)界面效应广角感知、处理存储[50]
    glass/ITO/ZnO/PbS/ZnO/AlUV/infrared ray (IR)氧空位导电细丝数字识别分类[45]
    ITO/Nb:SrTiO3vis界面效应自适应光电突触[48]
    ITO/PEDOT:PSS/CuSCN/CsPbBr3 PNs/AuUV界面效应回溯记忆功能的图像记忆[51]
    ITO/SnO2/CsPbCl3/TAPC/TAPC:MoO3/MoO3/Ag/MoO3UV/red light界面效应双模式图像检测记忆[42]
    RGO/GO-NCQD/grapheneUV氧空位导电细丝图像识别[53]
    ITO/CsPbBr2I/P3HT/Agvis/NIR卤素空位导电细丝0.4/–0.4> 10图像预处理[46]
    ITO/PCBM/MAPbI3:Si NCs/Spiro-OMeTAD/AuUV/NIR/vis界面效应图像预处理[54]
    Au/Ag-TiO2/FTOvis/UV表面等离子体共振效应/金属导电细丝3.4/–1.81×103图像预处理及识别[56]
    Ag/Cu3P/ITOλ = 660 nm金属导电细丝1×104回溯记忆功能的图像记忆[57]
    Ni/p-NiO/n-ZnO/NiUV界面效应图像记忆[40]
    ITO/MXene-ZnO/AlUV氧空位导电细丝-0.5/1.21×104图像预处理及数字识别分类[41]
    ITO/ZnO/Ag白光金属导电细丝2/–2人脸识别[44]
    NiO/TiO2/FTOUV界面效应> 10识别分类图像[59]
    触觉Au/Nafion/ITO压力质子迁移手写字母识别[61]
    NiO/ZnO/ITO/PET应变界面效应外部应变的时空信息处理[62]
    Si/NbOx/TiN压力晶体NbO2通道VTH = 2.05 V
    VH = 1.53 V
    将压力模拟信号转换为动态振荡频率[63]
    ITO/ZnO/NSTO压力界面效应1×104识别和记忆手写字母和单词[64]
    Al/TiO2/Al压力氧空位导电细丝14.2压力实时感知、学习/推理、反馈可视化图像[65]
    Pt/HfO2/TiN压力氧空位导电细丝0.9–1.1/–1> 100触觉记忆学习[66]
    ZnO/PVA基忆阻器压力界面效应VTH = 3.25 V1 × 103识别压力分布, 触觉可视化[68]
    嗅觉Pd/W/WO3/Pd乙醇、甲烷、乙烯、一氧化碳氧空位导电细丝气体识别[73]
    Ti/rGO-CS/AuH2S界面效应气体识别[75]
    下载: 导出CSV
  • [1]

    Lee Y, Lee T W 2019 Acc. Chem. Res. 52 964Google Scholar

    [2]

    Zeng M, He Y, Zhang C, Wan Q 2021 Front. Neurosci. 15 690950Google Scholar

    [3]

    Wan C, Cai P, Wang M, Qian Y, Huang W, Chen X 2020 Adv. Mater. 32 1902434Google Scholar

    [4]

    Zhou F, Chai Y 2020 Nat. Electron. 3 664Google Scholar

    [5]

    Wan T, Ma S, Liao F, Fan L, Chai Y 2022 Sci. China Inf. Sci. 65 141401Google Scholar

    [6]

    廖付友, 柴扬 2021 物理 50 378Google Scholar

    Liao F Y, Chai Y 2021 Physics 50 378Google Scholar

    [7]

    Kim Y, Chortos A, Xu W, Liu Y, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T W 2018 Science 360 998Google Scholar

    [8]

    Shi W, Cao J, Zhang Q, Li Y, Xu L 2016 IEEE Internet Things 3 637Google Scholar

    [9]

    El-Atab N 2021 Phys. Status Solidi A 219 2100528

    [10]

    Phong Truong T, Toan Le H, Thi Nguyen T 2020 J. Phys. : Conf. Ser. 1432 012068Google Scholar

    [11]

    Li Y, Wang Z, Midya R, Xia Q, Yang J J 2018 J. Phys. D:Appl. Phys. 51 503002Google Scholar

    [12]

    Wang Z, Wu H, Burr G W, Hwang C S, Wang K L, Xia Q, Yang J J 2020 Nat. Rev. Mater. 5 173Google Scholar

    [13]

    Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E 2020 Nat. Nanotechnol. 15 529Google Scholar

    [14]

    Ielmini D, Wong H S P 2018 Nat. Electron. 1 333Google Scholar

    [15]

    Wang J, Lv Z, Xing X, Li X, Wang Y, Chen M, Pang G, Qian F, Zhou Y, Han S T 2020 Adv. Funct. Mater. 30 1909114Google Scholar

    [16]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [17]

    Zhang Y, Wang Z, Zhu J, Yang Y, Rao M, Song W, Zhuo Y, Zhang X, Cui M, Shen L, Huang R, Yang J J 2020 Appl. Phys. Rev. 7 011308Google Scholar

    [18]

    Sun K, Chen J, Yan X 2020 Adv. Funct. Mater. 31 2006773

    [19]

    Lv Z, Wang Y, Chen J, Wang J, Zhou Y, Han S T 2020 Chem. Rev. 120 3941Google Scholar

    [20]

    李锟, 曹荣荣, 孙毅, 刘森, 李清江, 徐晖 2019 微纳电子与智能制造 1 87

    Li K, Cao R, Sun Y, Liu S, Li Q, Xu H 2019 Micro/nano Electronics and Intelligent Manufacturing 1 87

    [21]

    Ji X, Zhao X, Tan M C, Zhao R 2020 Adv. Intell. Syst. 2 1900118Google Scholar

    [22]

    Sun F, Lu Q, Feng S, Zhang T 2021 ACS Nano 15 3875Google Scholar

    [23]

    Carrara S 2021 IEEE Sens. J. 21 12370Google Scholar

    [24]

    张章, 李超, 韩婷婷, 许傲, 程心, 刘钢, 解光军 2021 电子与信息学报 43 1498Google Scholar

    Zhang Z, Li C, Han T T, Xu A, Cheng X, Liu G, Xie G J 2021 Journal of Electronics and Information Technology 43 1498Google Scholar

    [25]

    Zhu Y, Zhu Y, Mao H, He Y, Jiang S, Zhu L, Chen C, Wan C, Wan Q 2021 J. Phys. D:Appl. Phys. 55 053002

    [26]

    Tripathy A, Nine M J, Losic D, Silva F S 2021 Mater. Sci. Eng. R. Rep. 146 100647Google Scholar

    [27]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [28]

    Zhao M, Gao B, Tang J, Qian H, Wu H 2020 Appl. Phys. Rev. 7 011301Google Scholar

    [29]

    Zhang Y, Mao G Q, Zhao X, Li Y, Zhang M, Wu Z, Wu W, Sun H, Guo Y, Wang L, Zhang X, Liu Q, Lv H, Xue K H, Xu G, Miao X, Long S, Liu M 2021 Nat. Commun. 12 7232Google Scholar

    [30]

    Kim S J, Kim S B, Jang H W 2021 Science 24 101889

    [31]

    Tsai S C, Lo H Y, Huang C Y, Wu M C, Tseng Y T, Shen F C, Ho A Y, Chen J Y, Wu W W 2021 Adv. Electron. Mater. 7 2100605Google Scholar

    [32]

    Arndt B, Borgatti F, Offi F, Phillips M, Parreira P, Meiners T, Menzel S, Skaja K, Panaccione G, MacLaren D A, Waser R, Dittmann R 2017 Adv. Funct. Mater. 27 1702282Google Scholar

    [33]

    Herpers A, Lenser C, Park C, Offi F, Borgatti F, Panaccione G, Menzel S, Waser R, Dittmann R 2014 Adv. Mater. 26 2730Google Scholar

    [34]

    Le Gallo M, Sebastian A 2020 J. Phys. D: Appl. Phys. 53 213002Google Scholar

    [35]

    Sebastian A, Le Gallo M, Eleftheriou E 2019 J. Phys. D:Appl. Phys. 52 443002Google Scholar

    [36]

    Zhang C, Chen Y, Yi M, Zhu Y, Li T, Liu L, Wang L, Xie L, Huang W 2018 Sci. Sin. Inf. 48 115Google Scholar

    [37]

    Ho V M, Lee J A, Martin K C 2011 Science 334 623Google Scholar

    [38]

    Chen S, Lou Z, Chen D, Shen G 2018 Adv. Mater. 30 1705400Google Scholar

    [39]

    Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [40]

    Zhang L, Yu H, Xiao C, Si J, Xu H, Zhu W, Wang L 2020 Adv. Electron. Mater. 7 2000945

    [41]

    Wang Y, Gong Y, Yang L, Xiong Z, Lv Z, Xing X, Zhou Y, Zhang B, Su C, Liao Q, Han S T 2021 Adv. Funct. Mater. 31 2100144Google Scholar

    [42]

    Yang L, Singh M, Shen S W, Chih K Y, Liu S W, Wu C I, Chu C W, Lin H W 2020 Adv. Funct. Mater. 31 2008259

    [43]

    Vasileiadis N, Ntinas V, Sirakoulis G C, Dimitrakis P 2021 Materials 14 5223Google Scholar

    [44]

    Wang T Y, Meng J L, Li Q X, He Z Y, Zhu H, Ji L, Sun Q Q, Chen L, Zhang D W 2021 Nano Energy 89 106291Google Scholar

    [45]

    Li H, Jiang X, Ye W, Zhang H, Zhou L, Zhang F, She D, Zhou Y, Han S T 2019 Nano Energy 65 104000Google Scholar

    [46]

    Yang X, Xiong Z, Chen Y, Ren Y, Zhou L, Li H, Zhou Y, Pan F, Han S T 2020 Nano Energy 78 105246Google Scholar

    [47]

    Ham S, Choi S, Cho H, Na S I, Wang G 2019 Adv. Funct. Mater. 29 1806646Google Scholar

    [48]

    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 ACS Nano 13 2634Google Scholar

    [49]

    Zhao L, Fan Z, Cheng S, Hong L, Li Y, Tian G, Chen D, Hou Z, Qin M, Zeng M, Lu X, Zhou G, Gao X, Liu J M 2019 Adv. Electron. Mater. 6 1900858

    [50]

    Kumar M, Lim J, Kim S, Seo H 2020 ACS Nano 14 14108Google Scholar

    [51]

    Ma F, Zhu Y, Xu Z, Liu Y, Zheng X, Ju S, Li Q, Ni Z, Hu H, Chai Y, Wu C, Kim T W, Li F 2020 Adv. Funct. Mater. 30 1908901Google Scholar

    [52]

    Wu Z, Lu J, Shi T, Zhao X, Zhang X, Yang Y, Wu F, Li Y, Liu Q, Liu M 2020 Adv. Mater. 32 2004398Google Scholar

    [53]

    Lin Y, Wang Z, Zhang X, Zeng T, Bai L, Kang Z, Wang C, Zhao X, Xu H, Liu Y 2020 NPG Asia Mater. 12 64Google Scholar

    [54]

    Huang W, Hang P, Wang Y, Wang K, Han S, Chen Z, Peng W, Zhu Y, Xu M, Zhang Y, Fang Y, Yu X, Yang D, Pi X 2020 Nano Energy 73 104790Google Scholar

    [55]

    John R A, Acharya J, Zhu C, Surendran A, Bose S K, Chaturvedi A, Tiwari N, Gao Y, He Y, Zhang K K, Xu M, Leong W L, Liu Z, Basu A, Mathews N 2020 Nat. Commun. 11 3211Google Scholar

    [56]

    Shan X, Zhao C, Wang X, Wang Z, Fu S, Lin Y, Zeng T, Zhao X, Xu H, Zhang X, Liu Y 2021 Adv. Sci. 9 2104632

    [57]

    Liu Y, Wu L, Liu Q, Liu L, Ke S, Peng Z, Shi T, Yuan X, Huang H, Li J, Ye C, Chu P K, Wang J, Yu X F 2021 Adv. Funct. Mater. 32 2110900

    [58]

    Hu G, An H, Xi J, Lu J, Hua Q, Peng Z 2021 Nano Energy 89 106282Google Scholar

    [59]

    Kumar M, Lim J, Seo H 2021 Nano Energy 89 106471Google Scholar

    [60]

    Wang S, Wang C Y, Wang P, Wang C, Li Z A, Pan C, Dai Y, Gao A, Liu C, Liu J, Yang H, Liu X, Cheng B, Chen K, Wang Z, Watanabe K, Taniguchi T, Liang S J, Miao F 2021 Natl. Sci. Rev. 8 nwaa172Google Scholar

    [61]

    Zhang C, Ye W B, Zhou K, Chen H Y, Yang J Q, Ding G, Chen X, Zhou Y, Zhou L, Li F, Han S T 2019 Adv. Funct. Mater. 29 1808783Google Scholar

    [62]

    Kumar M, Singh R, Kang H, Kim S, Seo H 2020 Nano Energy 73 104756Google Scholar

    [63]

    Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay N K, Fang Y, Kiani F, Rao M, Yang Y, Xia Q, Liu Q, Liu M, Yang J J 2020 Nat. Commun. 11 51Google Scholar

    [64]

    Tan H, Tao Q, Pande I, Majumdar S, Liu F, Zhou Y, Persson P O A, Rosen J, van Dijken S 2020 Nat. Commun. 11 1369Google Scholar

    [65]

    Kim S H, Baek G W, Yoon J, Seo S, Park J, Hahm D, Chang J H, Seong D, Seo H, Oh S, Kim K, Jung H, Oh Y, Baac H W, Alimkhanuly B, Bae W K, Lee S, Lee M, Kwak J, Park J H, Son D 2021 Adv. Mater. 33 2104690Google Scholar

    [66]

    Xia Q, Qin Y, Zheng A, Qiu P, Zhang X 2021 Adv. Mater. Interfaces 8 2101068Google Scholar

    [67]

    Kumar M, Park J Y, Seo H 2021 Small Methods 5 2100566Google Scholar

    [68]

    Wang D, Wang L, Ran W, Zhao S, Yin R, Yan Y, Jiang K, Lou Z, Shen G 2020 Nano Energy 76 105109Google Scholar

    [69]

    Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74Google Scholar

    [70]

    Vidiš M, Plecenik T, Moško M, Tomašec S, Roch T, Satrapinskyy L, Grančič B, Plecenik A 2019 Appl. Phys. Lett. 115 093504Google Scholar

    [71]

    Lee D, Yun M J, Kim K H, Kim S, Kim H D 2021 ACS Sens. 6 4217Google Scholar

    [72]

    Ban C, Min X, Xu J, Xiu F, Nie Y, Hu Y, Zhang H, Eginligil M, Liu J, Zhang W, Huang W 2021 Adv. Mater. Technol. 6 2100366Google Scholar

    [73]

    Wang T, Huang H M, Wang X X, Guo X 2021 InfoMat. 3 804Google Scholar

    [74]

    Gao Z, Chen S, Li R, Lou Z, Han W, Jiang K, Qu F, Shen G 2021 Nano Energy 86 106078Google Scholar

    [75]

    Lu Q, Sun F, Dai Y, Wang Y, Liu L, Wang Z, Wang S, Zhang T 2021 Nano Res. 15 423

    [76]

    Vanarse A, Osseiran A, Rassau A 2016 Front. Neurosci. 10 115

    [77]

    Wang L, Wang Z, Lin J, Yang J, Xie L, Yi M, Li W, Ling H, Ou C, Huang W 2016 Sci. Rep. 6 35273Google Scholar

    [78]

    Sun L, Zhang Y, Hwang G, Jiang J, Kim D, Eshete Y A, Zhao R, Yang H 2018 Nano Lett. 18 3229Google Scholar

    [79]

    Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S, Ielmini D 2018 Sci. Adv. 4 eaat4752Google Scholar

    [80]

    Rahman M A, Walia S, Naznee S, Taha M, Nirantar S, Rahman F, Bhaskaran M, Sriram S 2020 Adv. Intell. Syst. 2 2000094Google Scholar

    [81]

    Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S 2021 Nat. Commun. 12 1120Google Scholar

    [82]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [83]

    Mohamad Hadis N S, Abd Manaf A, Ngalim S H, Herman S H 2017 Sens. Bio-Sens. Res. 14 21Google Scholar

    [84]

    Pawar A V, Kanapally S S, Kadam K D, Patil S L, Dongle V S, Jadhav S A, Kim S, Dongale T D 2019 J. Mater. Sci. : Mater. Electron. 30 11383Google Scholar

    [85]

    Abdul Hadi S, Humood K M, Abi Jaoude M, Abunahla H, Shehhi H F A, Mohammad B 2019 Sci. Rep. 9 9983Google Scholar

    [86]

    Song Y G, Suh J M, Park J Y, Kim J E, Chun S Y, Kwon J U, Lee H, Jang H W, Kim S, Kang C Y, Yoon J H 2021 Adv. Sci. 9 2103484

  • [1] 陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明. 钙钛矿相界面插层对SrFeOx基忆阻器的性能提升. 物理学报, 2023, 72(9): 097301. doi: 10.7498/aps.72.20221934
    [2] 任宽, 张握瑜, 王菲, 郭泽钰, 尚大山. 基于忆阻器阵列的下一代储池计算. 物理学报, 2022, 71(14): 140701. doi: 10.7498/aps.71.20220082
    [3] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [4] 单旋宇, 王中强, 谢君, 郑嘉慧, 徐海阳, 刘益春. 面向感存算一体化的光电忆阻器件研究进展. 物理学报, 2022, 71(14): 148701. doi: 10.7498/aps.71.20220350
    [5] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [6] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [7] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [8] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [9] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [10] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [11] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [12] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [13] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [14] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [15] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [16] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [17] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
计量
  • 文章访问数:  11938
  • PDF下载量:  721
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-02
  • 修回日期:  2022-03-04
  • 上网日期:  2022-07-10
  • 刊出日期:  2022-07-20

/

返回文章
返回