搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿相界面插层对SrFeOx基忆阻器的性能提升

陈开辉 樊贞 董帅 李文杰 陈奕宏 田国 陈德杨 秦明辉 曾敏 陆旭兵 周国富 高兴森 刘俊明

引用本文:
Citation:

钙钛矿相界面插层对SrFeOx基忆阻器的性能提升

陈开辉, 樊贞, 董帅, 李文杰, 陈奕宏, 田国, 陈德杨, 秦明辉, 曾敏, 陆旭兵, 周国富, 高兴森, 刘俊明

Perovskite-phase interfacial intercalated layer-induced performance enhancement in SrFeOx-based memristors

Chen Kai-Hui, Fan Zhen, Dong Shuai, Li Wen-Jie, Chen Yi-Hong, Tian Guo, Chen De-Yang, Qin Ming-Hui, Zeng Min, Lu Xu-Bing, Zhou Guo-Fu, Gao Xing-Sen, Liu Jun-Ming
PDF
HTML
导出引用
  • SrFeOx (SFO)是一种能在SrFeO2.5钙铁石(BM)相和SrFeO3钙钛矿(PV)相之间发生可逆拓扑相变的材料. 这种相变能显著改变电导却维持晶格框架不变, 使SFO成为一种可靠的阻变材料. 目前大部分SFO基忆阻器使用单层BM-SFO作为阻变功能层, 这种器件一般表现出突变型阻变行为, 因而其应用被局限于两态存储. 对于神经形态计算等应用, 单层BM-SFO忆阻器存在阻态数少、阻值波动大等问题. 为解决这些问题, 本研究设计出BM-SFO/PV-SFO双层忆阻器, 其中PV-SFO层为富氧界面插层, 可在导电细丝形成过程中提供大量氧离子并在断裂过程中回收氧离子, 使导电细丝的几何尺寸(如直径)在更大范围内可调, 从而获得更多、更连续且稳定的阻态, 可用于模拟长时程增强和抑制等突触行为. 基于该器件仿真构建了全连接神经网络(ANN), 在手写体数字光学识别(ORHD)数据集进行在线训练后获得了86.3%的识别准确率, 相比于单层忆阻器基ANN的准确率提升69.3%. 本研究为SFO基忆阻器性能调控提供了一种新方法, 并展示了它们作为人工突触器件在神经形态计算方面的应用潜力.
    SrFeOx (SFO) is a kind of material that can undergo a reversible topotactic phase transformation between an SrFeO2.5 brownmillerite (BM) phase and an SrFeO3 perovskite (PV) phase. This phase transformation can cause drastic changes in physical properties such as electrical conductivity, while maintaining the lattice framework. This makes SFO a stable and reliable resistive switching (RS) material, which has many applications in fields like RS memory, logic operation and neuromorphic computing. Currently, in most of SFO-based memristors, a single BM-SFO layer is used as an RS functional layer, and the working principle is the electric field-induced formation and rupture of PV-SFO conductive filaments (CFs) in the BM-SFO matrix. Such devices typically exhibit abrupt RS behavior, i.e. an abrupt switching between high resistance state and low resistance state. Therefore, the application of these devices is limited to the binary information storage. For the emerging applications like neuromorphic computing, the BM-SFO single-layer memristors still face problems such as a small number of resistance states, large resistance fluctuation, and high nonlinearity under pulse writing. To solve these problems, a BM-SFO/PV-SFO double-layer memristor is designed in this work, in which the PV-SFO layer is an oxygen-rich interfacial intercalated layer, which can provide a large number of oxygen ions during the formation of CFs and withdraw these oxygen ions during the rupture of CFs. This allows the geometric size (e.g., diameter) of the CFs to be adjusted in a wide range, which is beneficial to obtaining continuously tunable, multiple resistance states. The RS behavior of the designed double-layer memristor is studied experimentally. Compared with the single-layer memristor, it exhibits good RS repeatability, small resistance fluctuation, small and narrowly distributed switching voltages. In addition, the double-layer memristor exhibits stable and gradual RS behavior, and hence it is used to emulate synaptic behaviors such as long-term potentiation and depression. A fully connected neural network (ANN) based on the double-layer memristor is simulated, and a recognition accuracy of 86.3% is obtained after online training on the ORHD dataset. Comparing with a single-layer memristor-based ANN, the recognition accuracy of the double-layer memristor-based one is improved by 69.3%. This study provides a new approach to modulating the performance of SFO-based memristors and demonstrates their great potential as artificial synaptic devices to be used in neuromorphic computing.
      通信作者: 樊贞, fanzhen@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92163210, U1932125, 52172143)和广州市科技计划(批准号: 202201000008)资助的课题.
      Corresponding author: Fan Zhen, fanzhen@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92163210, U1932125, 52172143) and the Science and Technology Program of Guangzhou, China (Grant No. 202201000008).
    [1]

    Hsu C C, Sun J K, Tsao C C, Chen Y T 2017 Physica B 508 98Google Scholar

    [2]

    Vaccaro F, Brivio S, Perotto S, Mauri A G, Spiga S 2022 Neuromorph. Comput. Eng. 2 021003Google Scholar

    [3]

    Li C, Li W, Wang F, Zhang J, Sun J, Shen J, Hu K, Zhao J, Zhang K 2020 Mater. Sci. Semicond. Process. 116 105103Google Scholar

    [4]

    Clima S, Chen Y Y, Fantini A, Goux L, Degraeve R, Govoreanu B, Pourtois G, Jurczak M 2015 IEEE Electron Device Lett. 36 769Google Scholar

    [5]

    Jiang Y, Zhang K, Hu K, Zhang Y, Liang A, Song Z, Song S, Wang F 2021 Mater. Sci. Semicond. Process. 136 106131Google Scholar

    [6]

    Ban S, Kim O 2014 Jpn. J. Appl. Phys. 53 06JE15Google Scholar

    [7]

    Lubben M, Karakolis P, Vassilios I, Mormand P, Dimitrakis P, Valov I 2015 Adv. Mater. 28 6202Google Scholar

    [8]

    Stecconi T, Guido R, Berchialla L, Porta A L, Weiss J, Popoff Y, Halter M, Sousa M, Horst F, Davila D, Drechsler U, Dittmann R, Offrein B J, Bragaglia V 2022 Adv. Electron. Mater. 8 220048Google Scholar

    [9]

    Marinella M J, Dalton S M, Mickel P R, Dodd P E, Shaneyfelt M R, Bielejec E, Vizkelethy G, Kotula P G 2012 IEEE Trans. Nucl. Sci. 59 2987Google Scholar

    [10]

    Hur J H, Lee M J, Lee C B, Kim Y B, Kim C J 2010 Phys. Rev. B 82 155321Google Scholar

    [11]

    Hughart D R, Lohn A J, Mickel P R, Dalton S M, Dodd P E, Shaneyfelt M R, Silva A I, Bielejec E, Vizkelethy G, Marshall M T, Mclain M L, Marinella M J 2013 IEEE Trans. Nucl. Sci. 60 4512Google Scholar

    [12]

    Palagushkin A N, Roshchupkin D V, Yudkin F A, Irzhak D V, Keplinger O, Privezentsev V V 2018 J. Appl. Phys. 124 205109Google Scholar

    [13]

    Kim T H, Kim M H, Bang S, Lee D K, Kim S, Cho S, Park B G 2020 IEEE Trans. Nanotechnol. 19 475Google Scholar

    [14]

    Kim M, Yoo K, Jeon S P, Park S K, Kim Y H 2020 Micromachines 11 154Google Scholar

    [15]

    Jang J, Gi S, Yeo I, Choi S, Jang S, Ham S, Lee B, Wang G 2022 Adv. Sci. 9 2201117Google Scholar

    [16]

    Zhou G, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 8 2003765Google Scholar

    [17]

    Liu J, Yang H, Ma Z, Chen K, Huang X, Wang K 2020 J. Appl. Phys. 128 184902Google Scholar

    [18]

    Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, Hwang C S 2010 Nat. Nanotechnol. 5 148Google Scholar

    [19]

    Khare A, Shin D, Yoo T S, Kim M, Kang T D, Lee J, Roh S, Jung I H, Hwang J, Kim S W, Noh T W, Ohta H, Choi W S 2017 Adv. Mater. 29 1606566Google Scholar

    [20]

    Saleem M S, Cui B, Song C, Sun Y, Gu Y, Zhang R, Fayaz M U, Zhou X, Werner P, Parkin S S P, Pan F 2019 ACS Appl. Mater. Interfaces 11 6581Google Scholar

    [21]

    Nallagatla V R, Jung C U 2020 Appl. Phys. Lett. 117 143503Google Scholar

    [22]

    Acharya S K, Nallagatla R V, Togibasa O, Lee B W, Liu C, Jung C U, Park B H, Park J Y, Cho Y, Kim D W, Jo J, Kwon D H, Kim M, Hwang C S, Chae S C 2016 ACS Appl. Mater. Interfaces 8 7902Google Scholar

    [23]

    Tian J, Wu H, Fan Z, Zhang Y, Pennycook S J, Zheng D, Tan Z, Guo H, Yu P, Lu X, Zhou G, Gao X, Liu J M 2019 Adv. Mater. 31 1903679Google Scholar

    [24]

    Acharya S K, Jo J, Raveendra N V, Dash U, Kim M, Baik H, Lee S, Park B H, Lee J S, Chae S C, Hwang C S, Jung C U 2017 Nanoscale 9 10502Google Scholar

    [25]

    Su R, Chen J, Zhao Y, Cheng W, Li Y, Wang X, Yan J, Miao X 2022 Ceram. Int. 48 33115Google Scholar

    [26]

    Lyapunov N, Suen C H, Wong C M, Tang X, Ho Z L, Zhou K, Chen X X, Liu H M, Zhou X, Dai J Y 2021 J. Adv. Dielectr. 11 2150004Google Scholar

    [27]

    Rao J, Fan Z, Hong L, Cheng S, Huang Q, Zhao J, Xiang X, Guo E J, Guo H, Hou Z, Chen Y, Lu X, Zhou G, Gao X, Liu J M 2021 Mater. Today Phys. 18 110392Google Scholar

    [28]

    Das T, Nicholas J D, Qi Y 2017 J. Mater. Chem. A 5 4493Google Scholar

    [29]

    Chen S, Zhao J, Jin Q, Lin Q, Lin S, Chen S, Yao H, Wang J, Fan Z, Guo E J, Guo H 2021 China Phys. Mech. Astron. 64 287711Google Scholar

    [30]

    Kim S, Choi S H, Lee J, Lu W D 2014 ACS Nano 8 10262Google Scholar

    [31]

    Chen Y Y, Goux L, Clima S, Govoreanu B, Degraev R, Kar G S, Fantini A, Groeseneken G, Wouters D J, Jurczak M 2013 IEEE Trans. Electron Devices 60 1114Google Scholar

    [32]

    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J Y, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K, Kim K 2011 Nat. Mater. 10 625Google Scholar

    [33]

    Gao L, Wang I T, Chen P Y, Vrudhula S, Seo J S, Cao Y, Hou T H, Yu S 2015 Nanotechnology 26 455204Google Scholar

    [34]

    Baek I G, Lee M S, Seo S, Lee M J, Seo D H, Suh D S, Park J C, Park S O, Kim H S, Yoo I K, Chung U I, Moon J T 2004 IEDM Technical Digest. IEEE International Electron Devices Meeting San Francisco, CA, USA, December 13-15, 2004 p587

    [35]

    Li Y, Fang P, Fan X, Pei Y 2020 Semicond. Sci. Technol. 35 055004Google Scholar

    [36]

    Liu X, Sadaf S M, Son M, Shin J, Park J, Lee J, Park S, Hwang H 2011 Nanotechnology 22 475702Google Scholar

    [37]

    Chien W C. Chen Y C, Lai E K, Yao Y D, Lin P, Horng S F, Gong J, Chou T H, Lin H M, Chang M N, Shih Y H, Hsieh K Y, Liu R, Lu C Y 2010 IEEE Electron Device Lett. 31 126Google Scholar

    [38]

    Yoshidaa C, Tsunoda K, Noshiro H, Sugiyama Y 2007 Appl. Phys. Lett. 91 223510Google Scholar

    [39]

    Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano Lett. 9 1636Google Scholar

    [40]

    Nili H, Walia S, Balendhran S, Strukov D B, Bhaskaran M, Sriram S 2014 Adv. Funct. Mater. 24 6741Google Scholar

    [41]

    Liu P, Jia C, Zhang W 2022 ACS Appl. Electron. Mater. 4 982Google Scholar

    [42]

    Ou X, Shuai Y, Luo W, Siles P F, Kögler R, Fiedler J, Reuther H, Zhou S, Hübner R, Facsko S, Helm M, Mikolajick T, Schmidt O G, Schmidt H 2013 ACS Appl. Mater. Interfaces 5 12764Google Scholar

    [43]

    Ilyas N, Wang J, Li C, Fu H, Li D, Jiang X, Gu D, Jiang Y, Li W 2022 J. Mater. Sci. Technol. 97 254Google Scholar

    [44]

    Li S, Pam M E, Li Y, Chen L, Chien Y C, Fong X, Chi D, Ang K W 2022 Adv. Mater. 34 2103376Google Scholar

    [45]

    Sokolov A, Ali M, Li H, Jeon Y R, Ko M J, Choi C 2021 Adv. Electron. Mater. 7 2000866Google Scholar

    [46]

    Kim S M, Kim S, Ling L, Liu S E, Jin S, Jung Y M, Kim M, Park H H, Sangwan V K, Hersam M C, Lee H S 2022 ACS Appl. Mater. Interfaces 14 5673Google Scholar

    [47]

    Choi S, Jang S, Moon J H, Kim J C, Jeong H Y, Jang P, Lee K J, Wang G 2018 NPG Asia Mater. 10 1097Google Scholar

    [48]

    Li Y, Chen S, Yu Z, Li S, Xiong Y, Pam M E, Zhang Y W, Ang K W 2022 Adv. Mater. 34 2201488Google Scholar

    [49]

    Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Song W, Strachan J P, Barnell M, WuQ, Williams R S, Yang J J, Xia Q 2018 Nat. Commun. 9 2385Google Scholar

    [50]

    Wang Z, Wang W, Liu P, Liu G, Li J, Zhao J, Zhou Z, Wang J, Pei Y, Zhao Z, Li J, Wang L, Jian Z, Wang Y, Guo J, Yan X 2022 Neuromorp. Comput. 2 754876Google Scholar

    [51]

    Sun K, Chen J, Yan X 2020 Adv. Funct. Mater. 31 2006773Google Scholar

  • 图 1  (a) BM-SFO单层忆阻器、(b) BM-SFO/PV-SFO双层忆阻器结构示意图; (c) 单层忆阻器、(d)双层忆阻器的脉冲响应示意图, 其中LTP和LTD分别表示长时程增强和抑制; (e) BM-SFO/PV-SFO双层膜(红色)和BM-SFO单层膜(蓝色)的XRD θ-2θ扫描图

    Fig. 1.  Schematic diagram of the structures of the (a) BM-SFO single-layer memristor and (b) BM-SFO/PV-SFO double-layer memristor; schematic curves showing the responses of the (c) single-layer memristor and (d) double-layer memristor to potentiation and depression pulses, i.e., the long-term potentiation and depression (LTP and LTD, respectively) characteristics; (e) XRD θ-2θ scans of BM-SFO/PV-SFO double-layer film (red) and BM-SFO single-layer film (blue)

    图 2  (a) BM-SFO单层忆阻器和BM-SFO/PV-SFO双层忆阻器的I-V特性曲线对比; (b) 单层忆阻器和(c)双层忆阻器的I-V特性曲线(50次循环); (d)单层忆阻器和双层忆阻器的切换电压分布; (e)单层忆阻器和双层忆阻器的LRS和HRS电导分布

    Fig. 2.  (a) Comparison of I-V characteristics of BM-SFO single-layer and BM-SFO/PV-SFO double-layer memristors; 50 cycles of I-V characteristics of (b) single-layer memristor and (c) double-layer memristor; (d) statistical distributions of switching voltages of single-layer and double-layer memristors; (e) statistical distributions of LRS and HRS conductances of single-layer and double-layer memristors.

    图 3  BM-SFO/PV-SFO双层忆阻器导电细丝(a)连接和(b)断裂示意图; BM-SFO单层忆阻器导电细丝(c)连接和(d)断裂示意图

    Fig. 3.  Schematic diagrams showing the conductive filament (a) connection and (b) rupture in the BM-SFO/PV-SFO double-layer memristor; schematic diagrams showing the conductive filament (c) connection and (d) rupture in the BM-SFO single-layer memristor.

    图 4  (a) BM-SFO单层忆阻器和(b) BM-SFO/PV-SFO双层忆阻器在不同幅值正脉冲串作用下的电导变化; (c)单层忆阻器和(d)双层忆阻器在不同幅值负脉冲串作用下的电导变化

    Fig. 4.  Conductance evolutions of (a) BM-SFO single-layer memristor and (b) BM-SFO/PV-SFO double-layer memristor under positive pulse trains with different amplitudes; conductance evolutions of (c) single-layer memristor and (d) double-layer memristor under negative pulse trains with different amplitudes.

    图 5  (a) BM-SFO/PV-SFO双层忆阻器的LTP和LTD特性曲线, 所施加脉冲如插图所示; 双层忆阻器在(b) LTP和(c) LTD过程中电导态保持特性; (d)双层忆阻器多次循环下的LTP和LTD特性曲线, 上方插图展示了所施加脉冲

    Fig. 5.  (a) LTP and LTD characteristics of the BM-SFO/PV-SFO double-layer memristor, and the insets show the schematics of applied pulses; retention of the conductance states of the double-layer memristor during the (b) LTP and (c) LTD processes; (d) multi-cycle LTP and LTD characteristics of the double-layer memristor, and the upper inset shows schematics of the applied pulses.

    图 6  (a) 仿真构建的以SFO基忆阻器作为突触的全连接神经网络(ANN)结构示意图, W为连接输入层和输出层忆阻器突触的权重; (b) SFO基忆阻器交叉阵列示意图, 其中I为输入神经元, O为输出神经元; (c)以BM-SFO/PV-SFO双层忆阻器和BM-SFO单层忆阻器作为突触的ANN的准确率对比; (d)双层忆阻器基ANN的测试结果的混淆矩阵

    Fig. 6.  (a) Schematic diagrams of the simulated fully connected neural network (ANN) using SFO-based memristors as synapses, W is the weight of the memristor synapse connecting the input layer and the output layer; (b) schematic diagram of the SFO-based memristor crossbar, where I is the input neuron and O is the output neuron; (c) comparison of accuracies of BM-SFO/PV-SFO double-layer memristor-based ANN and BM-SFO single-layer memristor-based ANN; (d) confusion matrix of the test results from the double-layer memristor-based ANN.

    表 1  基于不同材料的导电细丝型忆阻器的主要器件性能

    Table 1.  Device performance of filament-type RS memories based on different materials.

    器件开关比Set电压/VReset电压/V阻态数文献
    TiN/Hf/HfOx/TiN>10+1.1+1.82[31]
    Pt/Ta2O5–x/TaO2–x/Pt>10–4.5+62[32, 33]
    Ag/NiOx/Pt>10±1.1±0.52[34, 35]
    SiO2/TiN/WOx/SiO2≈10+3+3.32—3[36, 37]
    Al/TiOx/ITO>102+2–22[38]
    Ag/ZnOx/Pt≈107+3–32[39]
    Pt/Ti/a-SrTiOx/Pt>102–1.35+1.92[40]
    Au/Cr/BaTiO3/Nb:SrTiO3/In>104–7–18[41]
    Au/BiFeO3/Pt>10+4–62[42]
    Au/SrFeO2.5/SrRuO3≈102–5+32[23]
    Ag/STO:Ag/SiO2/p++–Si≈102+3–360[43]
    Au/HfSe2/Ti≈102+1–1.226[44]
    Ag/Ti3C2Tx NS/Pt≈102+3+0.512[45]
    Au/SrFeO2.5/SrFeO3/SrRuO3≈102+0.7–1.432本工作
    下载: 导出CSV

    表 2  不同忆阻器作为突触的ANN图像识别准确率对比

    Table 2.  Image recognition accuracy comparison between ANNs using different memristors as synapses.

    器件阻态数ANN结构准确率/%数据集文献
    Pt/Li4Ti5O12/TiO2/Pt1003层网络(400×100×10)87MNIST(20×20)[46]
    Pt/TaOy/NP TaOx /Ta2003层网络(784×7840×10)89MNIST(28×28)[47]
    Ti/PdSe2/Au2003层网络(400×100×10)94MNIST(20×20)[48]
    Ta/HfO2/Pt2003层网络(64×54×10)91MNIST (8×8, 由20×20 下采样获得)[49]
    Ag/WSe2 QDs/ La0.3Sr0.7MnO3/SrTiO3703层网络 (NA)91ORHD(8×8)[50]
    Au/SrFeO2.5/SrFeO3/SrRuOx322层网络 (64×10)86ORHD(8×8)本工作
    下载: 导出CSV
  • [1]

    Hsu C C, Sun J K, Tsao C C, Chen Y T 2017 Physica B 508 98Google Scholar

    [2]

    Vaccaro F, Brivio S, Perotto S, Mauri A G, Spiga S 2022 Neuromorph. Comput. Eng. 2 021003Google Scholar

    [3]

    Li C, Li W, Wang F, Zhang J, Sun J, Shen J, Hu K, Zhao J, Zhang K 2020 Mater. Sci. Semicond. Process. 116 105103Google Scholar

    [4]

    Clima S, Chen Y Y, Fantini A, Goux L, Degraeve R, Govoreanu B, Pourtois G, Jurczak M 2015 IEEE Electron Device Lett. 36 769Google Scholar

    [5]

    Jiang Y, Zhang K, Hu K, Zhang Y, Liang A, Song Z, Song S, Wang F 2021 Mater. Sci. Semicond. Process. 136 106131Google Scholar

    [6]

    Ban S, Kim O 2014 Jpn. J. Appl. Phys. 53 06JE15Google Scholar

    [7]

    Lubben M, Karakolis P, Vassilios I, Mormand P, Dimitrakis P, Valov I 2015 Adv. Mater. 28 6202Google Scholar

    [8]

    Stecconi T, Guido R, Berchialla L, Porta A L, Weiss J, Popoff Y, Halter M, Sousa M, Horst F, Davila D, Drechsler U, Dittmann R, Offrein B J, Bragaglia V 2022 Adv. Electron. Mater. 8 220048Google Scholar

    [9]

    Marinella M J, Dalton S M, Mickel P R, Dodd P E, Shaneyfelt M R, Bielejec E, Vizkelethy G, Kotula P G 2012 IEEE Trans. Nucl. Sci. 59 2987Google Scholar

    [10]

    Hur J H, Lee M J, Lee C B, Kim Y B, Kim C J 2010 Phys. Rev. B 82 155321Google Scholar

    [11]

    Hughart D R, Lohn A J, Mickel P R, Dalton S M, Dodd P E, Shaneyfelt M R, Silva A I, Bielejec E, Vizkelethy G, Marshall M T, Mclain M L, Marinella M J 2013 IEEE Trans. Nucl. Sci. 60 4512Google Scholar

    [12]

    Palagushkin A N, Roshchupkin D V, Yudkin F A, Irzhak D V, Keplinger O, Privezentsev V V 2018 J. Appl. Phys. 124 205109Google Scholar

    [13]

    Kim T H, Kim M H, Bang S, Lee D K, Kim S, Cho S, Park B G 2020 IEEE Trans. Nanotechnol. 19 475Google Scholar

    [14]

    Kim M, Yoo K, Jeon S P, Park S K, Kim Y H 2020 Micromachines 11 154Google Scholar

    [15]

    Jang J, Gi S, Yeo I, Choi S, Jang S, Ham S, Lee B, Wang G 2022 Adv. Sci. 9 2201117Google Scholar

    [16]

    Zhou G, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 8 2003765Google Scholar

    [17]

    Liu J, Yang H, Ma Z, Chen K, Huang X, Wang K 2020 J. Appl. Phys. 128 184902Google Scholar

    [18]

    Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, Hwang C S 2010 Nat. Nanotechnol. 5 148Google Scholar

    [19]

    Khare A, Shin D, Yoo T S, Kim M, Kang T D, Lee J, Roh S, Jung I H, Hwang J, Kim S W, Noh T W, Ohta H, Choi W S 2017 Adv. Mater. 29 1606566Google Scholar

    [20]

    Saleem M S, Cui B, Song C, Sun Y, Gu Y, Zhang R, Fayaz M U, Zhou X, Werner P, Parkin S S P, Pan F 2019 ACS Appl. Mater. Interfaces 11 6581Google Scholar

    [21]

    Nallagatla V R, Jung C U 2020 Appl. Phys. Lett. 117 143503Google Scholar

    [22]

    Acharya S K, Nallagatla R V, Togibasa O, Lee B W, Liu C, Jung C U, Park B H, Park J Y, Cho Y, Kim D W, Jo J, Kwon D H, Kim M, Hwang C S, Chae S C 2016 ACS Appl. Mater. Interfaces 8 7902Google Scholar

    [23]

    Tian J, Wu H, Fan Z, Zhang Y, Pennycook S J, Zheng D, Tan Z, Guo H, Yu P, Lu X, Zhou G, Gao X, Liu J M 2019 Adv. Mater. 31 1903679Google Scholar

    [24]

    Acharya S K, Jo J, Raveendra N V, Dash U, Kim M, Baik H, Lee S, Park B H, Lee J S, Chae S C, Hwang C S, Jung C U 2017 Nanoscale 9 10502Google Scholar

    [25]

    Su R, Chen J, Zhao Y, Cheng W, Li Y, Wang X, Yan J, Miao X 2022 Ceram. Int. 48 33115Google Scholar

    [26]

    Lyapunov N, Suen C H, Wong C M, Tang X, Ho Z L, Zhou K, Chen X X, Liu H M, Zhou X, Dai J Y 2021 J. Adv. Dielectr. 11 2150004Google Scholar

    [27]

    Rao J, Fan Z, Hong L, Cheng S, Huang Q, Zhao J, Xiang X, Guo E J, Guo H, Hou Z, Chen Y, Lu X, Zhou G, Gao X, Liu J M 2021 Mater. Today Phys. 18 110392Google Scholar

    [28]

    Das T, Nicholas J D, Qi Y 2017 J. Mater. Chem. A 5 4493Google Scholar

    [29]

    Chen S, Zhao J, Jin Q, Lin Q, Lin S, Chen S, Yao H, Wang J, Fan Z, Guo E J, Guo H 2021 China Phys. Mech. Astron. 64 287711Google Scholar

    [30]

    Kim S, Choi S H, Lee J, Lu W D 2014 ACS Nano 8 10262Google Scholar

    [31]

    Chen Y Y, Goux L, Clima S, Govoreanu B, Degraev R, Kar G S, Fantini A, Groeseneken G, Wouters D J, Jurczak M 2013 IEEE Trans. Electron Devices 60 1114Google Scholar

    [32]

    Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J Y, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K, Kim K 2011 Nat. Mater. 10 625Google Scholar

    [33]

    Gao L, Wang I T, Chen P Y, Vrudhula S, Seo J S, Cao Y, Hou T H, Yu S 2015 Nanotechnology 26 455204Google Scholar

    [34]

    Baek I G, Lee M S, Seo S, Lee M J, Seo D H, Suh D S, Park J C, Park S O, Kim H S, Yoo I K, Chung U I, Moon J T 2004 IEDM Technical Digest. IEEE International Electron Devices Meeting San Francisco, CA, USA, December 13-15, 2004 p587

    [35]

    Li Y, Fang P, Fan X, Pei Y 2020 Semicond. Sci. Technol. 35 055004Google Scholar

    [36]

    Liu X, Sadaf S M, Son M, Shin J, Park J, Lee J, Park S, Hwang H 2011 Nanotechnology 22 475702Google Scholar

    [37]

    Chien W C. Chen Y C, Lai E K, Yao Y D, Lin P, Horng S F, Gong J, Chou T H, Lin H M, Chang M N, Shih Y H, Hsieh K Y, Liu R, Lu C Y 2010 IEEE Electron Device Lett. 31 126Google Scholar

    [38]

    Yoshidaa C, Tsunoda K, Noshiro H, Sugiyama Y 2007 Appl. Phys. Lett. 91 223510Google Scholar

    [39]

    Yang Y C, Pan F, Liu Q, Liu M, Zeng F 2009 Nano Lett. 9 1636Google Scholar

    [40]

    Nili H, Walia S, Balendhran S, Strukov D B, Bhaskaran M, Sriram S 2014 Adv. Funct. Mater. 24 6741Google Scholar

    [41]

    Liu P, Jia C, Zhang W 2022 ACS Appl. Electron. Mater. 4 982Google Scholar

    [42]

    Ou X, Shuai Y, Luo W, Siles P F, Kögler R, Fiedler J, Reuther H, Zhou S, Hübner R, Facsko S, Helm M, Mikolajick T, Schmidt O G, Schmidt H 2013 ACS Appl. Mater. Interfaces 5 12764Google Scholar

    [43]

    Ilyas N, Wang J, Li C, Fu H, Li D, Jiang X, Gu D, Jiang Y, Li W 2022 J. Mater. Sci. Technol. 97 254Google Scholar

    [44]

    Li S, Pam M E, Li Y, Chen L, Chien Y C, Fong X, Chi D, Ang K W 2022 Adv. Mater. 34 2103376Google Scholar

    [45]

    Sokolov A, Ali M, Li H, Jeon Y R, Ko M J, Choi C 2021 Adv. Electron. Mater. 7 2000866Google Scholar

    [46]

    Kim S M, Kim S, Ling L, Liu S E, Jin S, Jung Y M, Kim M, Park H H, Sangwan V K, Hersam M C, Lee H S 2022 ACS Appl. Mater. Interfaces 14 5673Google Scholar

    [47]

    Choi S, Jang S, Moon J H, Kim J C, Jeong H Y, Jang P, Lee K J, Wang G 2018 NPG Asia Mater. 10 1097Google Scholar

    [48]

    Li Y, Chen S, Yu Z, Li S, Xiong Y, Pam M E, Zhang Y W, Ang K W 2022 Adv. Mater. 34 2201488Google Scholar

    [49]

    Li C, Belkin D, Li Y, Yan P, Hu M, Ge N, Jiang H, Montgomery E, Lin P, Wang Z, Song W, Strachan J P, Barnell M, WuQ, Williams R S, Yang J J, Xia Q 2018 Nat. Commun. 9 2385Google Scholar

    [50]

    Wang Z, Wang W, Liu P, Liu G, Li J, Zhao J, Zhou Z, Wang J, Pei Y, Zhao Z, Li J, Wang L, Jian Z, Wang Y, Guo J, Yan X 2022 Neuromorp. Comput. 2 754876Google Scholar

    [51]

    Sun K, Chen J, Yan X 2020 Adv. Funct. Mater. 31 2006773Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [4] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [6] 温新宇, 王亚赛, 何毓辉, 缪向水. 忆阻类脑计算. 物理学报, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [7] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [8] 朱玮, 刘兰, 文常保, 李杰. 双层结构突触仿生忆阻器的时空信息传递及稳定性. 物理学报, 2021, 70(17): 178504. doi: 10.7498/aps.70.20210274
    [9] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛. 基于水热法制备三氧化钼纳米片的人工突触器件. 物理学报, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [10] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [11] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [12] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [13] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [14] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [15] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [16] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  4590
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-12-02
  • 上网日期:  2022-12-28
  • 刊出日期:  2023-05-05

/

返回文章
返回