搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声学四极子拓扑绝缘体中的位错态

蒋婧 王小云 孔鹏 赵鹤平 何兆剑 邓科

引用本文:
Citation:

声学四极子拓扑绝缘体中的位错态

蒋婧, 王小云, 孔鹏, 赵鹤平, 何兆剑, 邓科

Dislocation defect states in acoustic quadrupole topological insulators

Jiang Jing, Wang XiaoYun, Kong Peng, Zhao HePing, He ZhaoJian, Deng Ke
PDF
导出引用
  • 四极子拓扑绝缘体是人们提出的第一类高阶拓扑绝缘体,它具有量子化的四极矩而偶极矩为零。四极子拓扑绝缘体拓宽了传统的体-边对应关系,从而观察到了更低维度的拓扑边界态。最近,由局域在位错附近的拓扑缺陷态主导的体-位错对应关系引起了许多研究者的关注,它将晶格倒易空间的拓扑结构与位错态的出现联系起来。本文研究了声学四极子拓扑绝缘体中的位错态。在具有非平庸相的声学四极子拓扑绝缘体中嵌入部分具有平庸相的晶格,此时在由两种具有不同拓扑相晶格形成边界的角落处就会产生可以用1/2量化分数电荷表征的位错态。通过在系统内部引入缺陷,验证了此拓扑位错态的鲁棒性。此外,还证明了通过运用不同嵌入晶格的方式可以随意设计位错态的位置。本工作中研究的拓扑位错态拓宽了人工结构中高阶拓扑物态的种类,并为高阶拓扑绝缘体在声学中的应用(如声传感和高性能能量收集)提供了新的思路。
    Quadrupole topological insulators (QTIs) are the first proposed higher-order topological phase of matter with quantized quadrupole moment but zero dipole moment. The QTIs have expanded widely the traditional bulk-boundary correspondence, giving rise to the observation of lower-dimensional topological boundary states. The recent interest turns to bulk-dislocation correspondence, which dominates the topological states localized to disclinations, and links the reciprocal-space topology of a lattice to the emergence of dislocation states. Recently, many research groups have turned the studies of dislocation defects to classical waves systems. The methods to induce the dislocation defects in these researches are to remove part of the lattices of topological insulator and then rearrange the remaining of the topological insulator. However, through such methods, the micro structures of the lattices were changed, it is difficult to realize in the actual operation. In this paper, we study the dislocation defect states in acoustic QTIs. The acoustic QTIs is designed by reversing the magnitude of the intracellular and extracellular coupling in the system, and the bulk energy bands and topological corner states are studied. Subsequently, by introducing partial trivial lattices into acoustic QTI structures, the dislocation bound states are generated at the corner formed by two different topological phases, which can be characterized by a ½ quantized fractional charge. The robustness of the topological dislocation states is verified by introducing the imperfection inside the system. Further, it is demonstrated that the dislocation positions can be designed at will. Without changing the microstructure of the lattice, we have successfully achieved the modulation of line dislocation states and bulk dislocation states. The topological dislocation states studied in this work broaden the classification of higher-order topological phases in artificial structures, and provide new insights into the acoustic applications of higher-order topology, such as sensing and high-performance energy harvesting. Figure. (a) The tight-binding (TB) model and the corresponding acoustic model for QTI. (b) The corresponding band structures for the acoustic QTI. (c) The model structure to create the bulk-dislocation states. (d) The corresponding band structures for the bulk-dislocation model. In the following, we briefly present the key importance in this work. The tight-binding (TB) model is employed to characterize the quadrupole topological insulator as shown in Fig. (a), the single cell is marked by the light shaded square sketches in the middle of Fig (a). The corresponding band structure for the acoustic QTI model is displayed in Fig. (b). It can be observed that the coupled Pz modes in resonant cavities are splitted into two pairs of flat bands in QTI, which are separated by a gap with frequency ranging from 7558.7 Hz to 8359.8 Hz. Each pair of flat bands are almost double degenerated. In Fig. (c), we schematically exhibit the bulk-dislocation defect of TB model by inserting one row of trivial lattices (marked with orange rectangle) in the QTI. Along the defect, we choose the site at will to form the bulk dislocation (marked with red circles). The black thin lines indicate the weak couplings. The corresponding band structure for the bulk-dislocation defect is displayed in Fig. (d). It can be clearly seen that two bulk-dislocation states (red dots) are created within the gap of coupled Pz modes.
  • [1]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115

    [2]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61

    [3]

    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342

    [4]

    Huang X, Lu J, Yan Z, Yan M, Deng W, Chen G, Liu Z 2022 Sci. Bull. 67 488

    [5]

    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2017 Nat. Phys. 13 369

    [6]

    Biesenthal T, Maczewsky L J, Yang Z, Kremer M, Segev M, Szameit A, Heinrich M 2022 Science 376 1114

    [7]

    Song Z, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402

    [8]

    Xue H, Yang Y, Zhang B 2022 Nat. Rev. Mater. 7 974

    [9]

    Ezawa, Motohiko 2018 Phys. Rev. Lett. 120 026801

    [10]

    Xie B, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M, Chen Y 2021 Nat. Rev. Phys. 3 520

    [11]

    Pu Z, He H, Luo L, Ma Q, Ye L, Ke M, Liu Z 2023 Phys. Rev. Lett. 130 116103

    [12]

    Ma Q, Pu Z, Ye L, Lu J, Huang X, Ke M, He H, Deng W, Liu Z 2024 Phys. Rev. Lett. 132 066601

    [13]

    Zhu W, Deng W, Liu Y, Lu J, Wang H-X, Lin Z-K, Huang X, Jiang J, Liu Z 2023 Rep. Prog. Phys. 86 106501

    [14]

    Wu J, Huang X, Lu J, Wu Y, Deng W, Li F, Liu Z 2020 Phys. Rev. B 102 104109

    [15]

    Hu J R, Kong P, Bi R G, Deng K, Zhao H P 2022 Acta Phys. Sin. 71 190 (in Chinese) [胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平 2022 物理学报 71 190]

    [16]

    Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A, Hafezi M 2019 Nat. Photonics 13 692

    [17]

    Qi Y, Qiu C, Xiao M, He H, Ke M, Liu Z 2020 Phys. Rev. Lett. 124 206601

    [18]

    Li C A, Wu S S 2020 Phys. Rev. B 101 195309

    [19]

    Li C A, Fu B, Hu Z-A, Li J, Shen S Q 2020 Phys. Rev. Lett. 125 166801

    [20]

    Qi Y, He H, Xiao M 2022 Appl. Phys. Lett. 120 212202

    [21]

    Ye L, Qiu C, Xiao M, Li T, Du J, Ke M, Liu Z 2022 Nat. Commun. 13 508

    [22]

    Yamada S S, Li T, Lin M, Peterson C W, Hughes T L, Bahl G 2022 Nat. Commun. 13 2035

    [23]

    Ran Y, Zhang Y, Vishwanath A 2009 Nat. Phys. 5 298

    [24]

    Grinberg I H, Lin M, Benalcazar W A, Hughes T L, Bahl G 2020 Phys. Rev. Appl. 14 064042

    [25]

    Xue H, Jia D, Ge Y, Guan Y j, Wang Q, Yuan S q, Sun H X, Chong Y, Zhang B 2021 Phys. Rev. Lett. 127 214301

    [26]

    Teo J C, Hughes T L 2017 Annu. Rev. Condens. Matter Phys. 8 211

    [27]

    Peterson C W, Li T, Jiang W, Hughes T L, Bahl G 2021 Nature 589 376

    [28]

    Liu Y, Leung S, Li F F, Lin Z K, Tao X, Poo Y, Jiang J H 2021 Nature 589 381

    [29]

    Wei H, Tsui D, Paalanen M, Pruisken A 1988 Phys. Rev. Lett. 61 1294

    [30]

    Roberts E, Behrends J, Béri B 2020 Phys. Rev. B 101 155133

    [31]

    Liu F, Wakabayashi K 2017 Phys. Rev. Lett. 118 076803

    [32]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903

    [33]

    Yang Y B, Li K, Duan L-M, Xu Y 2021 Phys. Rev. B 103 085408

    [34]

    Wang H X, Lin Z K, Jiang B, Guo G Y, Jiang J H 2020 Phys. Rev. Lett. 125 146401

    [35]

    He L, Addison Z, Mele E J, Zhen B 2020 Nat. Commun. 11 3119

    [36]

    Benalcazar W A, Li T, Hughes T L 2019 Phys. Rev. B 99 245151

    [37]

    Weiner M, Ni X, Li M, Alù A, Khanikaev A B 2020 Sci. Adv. 6 eaay4166

    [38]

    Wheeler W A, Wagner L K, Hughes T L 2019 Phys. Rev. B 100 245135

    [39]

    Zhang X, Xie B Y, Wang H F, Xu X, Tian Y, Jiang J H, Lu M H, Chen Y F 2019 Nat. Commun. 10 5331

    [40]

    Kang B, Shiozaki K, Cho G Y 2019 Phys. Rev. B 100 245134

    [41]

    Ni X, Li M, Weiner M, Alù A, Khanikaev A B 2020 Nat. Commun. 11 2108

    [42]

    Zheng S, Man X, Kong Z L, Lin Z-K, Duan G, Chen N, Yu D, Jiang J H, Xia B 2022 Sci. Bull. 67 2069

    [43]

    Kim H R, Hwang M-S, Smirnova D, Jeong K Y, Kivshar Y, Park H G 2020 Nat. Commun. 11 5758

    [44]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147

    [45]

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 254 (in Chinese) [李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科 2022 物理学报 71 254]

    [46]

    Chen Y, Liu D, Wu Y, Yu P, Liu Y 2023 Int. J. Mech. Sci. 239 107884

  • [1] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, doi: 10.7498/aps.71.20211932
    [2] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, doi: 10.7498/aps.71.20211642
    [3] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, doi: 10.7498/aps.71.20221292
    [4] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态. 物理学报, doi: 10.7498/aps.70.20211642
    [5] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, doi: 10.7498/aps.69.20200542
    [6] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, doi: 10.7498/aps.68.20191007
    [7] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, doi: 10.7498/aps.68.20190951
    [8] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, doi: 10.7498/aps.68.20190260
    [9] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, doi: 10.7498/aps.66.224301
    [10] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, doi: 10.7498/aps.66.227804
    [11] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, doi: 10.7498/aps.64.194301
    [12] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, doi: 10.7498/aps.63.034305
    [13] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究. 物理学报, doi: 10.7498/aps.59.393
    [14] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, doi: 10.7498/aps.59.387
    [15] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 二维声子晶体平板成像中的通道特征. 物理学报, doi: 10.7498/aps.59.381
    [16] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, doi: 10.7498/aps.55.4744
    [17] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, doi: 10.7498/aps.55.5866
    [18] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, doi: 10.7498/aps.55.517
    [19] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, doi: 10.7498/aps.55.2300
    [20] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, doi: 10.7498/aps.54.4511
计量
  • 文章访问数:  108
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-18

/

返回文章
返回