搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性介质包裹的液体腔内球状泡群耦合振动模型

左馨怡 雷照康 武耀蓉 王成会

引用本文:
Citation:

黏弹性介质包裹的液体腔内球状泡群耦合振动模型

左馨怡, 雷照康, 武耀蓉, 王成会

A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium

Zuo Xin-Yi, Lei Zhao-Kang, Wu Yao-Rong, Wang Cheng-Hui
PDF
导出引用
  • 高强度超声可激发生物组织空化,软组织常被当作黏弹性介质,因此,黏弹性介质中气泡动力学行为研究可为超声生物治疗提供理论支持。为探索组织液内多气泡动力学影响,我们构建了球形液体腔内的球状泡团模型,考虑了液体腔外黏弹性介质的动力学效应,得到了球状泡群内气泡耦合振动方程,并基于此分析了气泡的振动行为。结果表明,腔体以及泡群约束虽抑制了气泡振动,但在一定程度上还可以增强气泡的非线性振动特性,主要表现为在1 MHz的声波激励下,气泡的主共振响应半径在2 μm附近且随着气泡数密度的增加有减小的趋势。约束环境下气泡的非球形振动稳定性主要受驱动声波压力幅值和频率、气泡初始半径以及气泡数密度影响,而腔体半径的影响随驱动压力的增加而增强;存在最小不稳定驱动声压阈值,不同初始半径的气泡不稳定振动阈值压力不同且不稳定分布区主要分布在小于4 μm的范围内;随着驱动频率由20 kHz增加至1 MHz,气泡振动不稳定区的声压阈值由0.19 MPa增大至0.29 MPa,且不稳定区域有减小的趋势;随着气泡数密度的增加,气泡不稳定分布区域内散布的条带型稳定区逐渐向无规则的斑图状分布,表明高声压条件下气泡振动对条件参数更为敏感,极易受到扰动发生不稳定振动而崩溃。高频声波激励下平衡半径1 μm ~4 μm间的空化泡的惯性空化阈值较低,其中2 μm微泡的惯性空化阈值约为0.16 MPa,且受各参量的影响较小,更易于激发惯性空化;平衡半径大于4 μm范围内气泡的空化阈值受各参量的影响逐渐增强,而频率和气泡数密度的影响尤为显著。
    Considering the interactions between bubbles in a multi-bubble system in a liquid micro-cavity, a model of a spherical bubble cluster in a liquid cavity was developed to describe the dynamical effect of the viscoelastic medium outside the liquid cavity on the oscillation of bubbles, and the coupled equations of bubbles in the spherical cluster were obtained. Subsequently, the acoustic response characteristics of the bubbles were investigated by analyzing the radial oscillation, the stability of the non-spherical shape of bubbles and the threshold of inertial cavitation. The results showed that the confinement of the cavity and the bubble cluster promoted the suppression of bubble oscillation, however, to a certain extent, it might enhance the nonlinear properties of bubbles. According to the acoustic response curves at 1 MHz, it is found that the main resonance peaks shift left when increasing the bubble number, which means a minor resonant radius can be obtained. The nonlinear stability of bubbles in a confined environment is mainly determined by acoustic pressure amplitude and frequency, the initial radius of the bubble, and the bubble number density, while the effect of the cavity radius is enhanced with the increase of the driving pressure. There was a minimum unstable driving acoustic pressure threshold, depending on the initial radius of the bubbles, and the unstable regions were mainly located in the range of less than 4 μm. With the increase in driving acoustic frequency, the unstable region tends to decrease due to the increasing pressure threshold of instability. With the increase in bubble number density, the strip-type stable region scattered in the unstable region in the map was gradually transformed to a random patch-like distribution, which indicates that the bubble oscillation under high acoustic pressure is more sensitive to the parameters, and it is extremely easily perturbed to generate unstable oscillation and then collapse. A lower inertial cavitation threshold was obtained in the range of 1 μm ~ 4 μm of bubble equilibrium radius, and it was less affected by parameters and easier to excite inertial cavitation, whereas the threshold increased in the range greater than 4 μm. Comparing with influences of these parameters, the frequency and bubble number density were more critical on the inertial thresholds.
  • [1]

    Kooiman K, Roovers S, Langeveld S A G, Kleven R T, Dewitte H, O'Reilly M A, Escoffre J M, Bouakaz A, Verweij M D, Hynynen K, Lentacker I, Stride E, Holland C K 2020 Ultrasound Med. Biol. 46 1296

    [2]

    Xi F, Feng Y, Chen Q, Chen L, Liu J 2022 Front. Oncol. 12 852454

    [3]

    Ellegala D B, Leong-Poi H, Carpenter J E, Klibanov A L, Kaul S, Shaffrey M E, Sklenar J, Lindner J R 2003 Circulation 108 336

    [4]

    Lanza G M, Abendschein D R, Hall C S, Scott M J, Scherrer D E, Houseman A, Miller J G, Wickline S A 2000 J Am Soc Echocardiogr 13 608

    [5]

    Lyons B, Balkaran J P R, Dunn-Lawless D, Lucian V, Keller S B, O'Reilly C S, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C 2023 Molecules 28

    [6]

    Wischhusen J, Padilla F 2019 Irbm 40 10

    [7]

    Guzman H R, McNamara A J, Nguyen D X, Prausnitz M R 2003 Ultrasound Med. Biol. 29 1211

    [8]

    Liu Y, Yang H, Sakanishi A 2006 Biotechnol. Adv. 24 1

    [9]

    Unnikrishnan S, Klibanov A L 2012 AJR Am J Roentgenol 199 292

    [10]

    Villanueva F S, Jankowski R J, Klibanov S, Pina M L, Alber S M, Watkins S C, Brandenburger G H, Wagner W R 1998 Circulation 98 1

    [11]

    Schenk H J, Steppe K, Jansen S 2015 Trends Plant Sci. 20 199

    [12]

    Tanasawa I, Yang W-J 1970 J. Appl.Phys. 41 4526

    [13]

    Wang Q X 2017 Physics of Fluids 29

    [14]

    Vincent O, Marmottant P, Gonzalez-Avila S R, Ando K, Ohl C D 2014 Soft Matter 10 1455

    [15]

    Church C C, Yang X M 2006 AIP Conf. Proc. 838 217

    [16]

    Leonov K, Akhatov I 2021 Phys. Rev. E 104 015105

    [17]

    Zhang T-R, Mo R-Y, Hu J, Chen S, Wang C-H, Guo J-Z 2021 Acta Phys. Sin. 70 124301 [张陶然,莫润阳,胡静,陈时,王成会,郭建中 2021 物理学报 70 124301]

    [18]

    Zhang X-M, Wang C-H, Guo J-Z, Mo R-Y, Hu J, Chen S 2021 Acta Phys. Sin. 70 214305 [张先梅,王成会,郭建中,莫润阳,胡静,陈时 2021 物理学报 70 214305]

    [19]

    Zhang X, Li F, Wang C, Guo J, Mo R, Hu J, Chen S, He J, Liu H 2022 Ultrason. Sonochem 84 105957

    [20]

    Gaudron R, Murakami K, Johnsen E 2020 J. Mech. Phys. Solids 143

    [21]

    Zilonova E M, Solovchuk M, Sheu T W H 2019 Ultrason. Sonochem 53 11

    [22]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E Stat Nonlin Soft Matter Phys 77 016609

    [23]

    Wang X, Chen W, Zhou M, Zhang Z, Zhang L 2022 Ultrason. Sonochem 84 105952

    [24]

    An Y 2011 Phys. Rev. E Stat Nonlin Soft Matter Phys 83 066313

    [25]

    Zhang W, An Y 2013 Phys. Rev. E Stat Nonlin Soft Matter Phys 87 053023

    [26]

    Wang C-H, Mo R-Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 [王成会,莫润阳,胡静,陈时 2015 物理学报 64 234301]

    [27]

    Xu L, Yao X-R, Shen Y 2024 Chin. Phys. B 33

    [28]

    Liu R, Huang C-Y, Wu Y-R, Hu J, Mo R-Y, Wang C-H 2024 Acta Phys. Sin. 73 084303[刘睿,黄晨阳,武耀蓉,胡静,莫润阳,王成会 2024 物理学报 73 084303]

    [29]

    Li F, Zhang X-M, Tian H, Hu J, Chen S, Wang C-H, Guo J-Z, Mo R-Y 2022 Acta Phys. Sin. 71 084303[李凡,张先梅,田华,胡静,陈时,王成会,郭建中,莫润阳 2022 物理学报 71 084303]

    [30]

    Vincent O, Marmottant P, Quinto-Su P A, Ohl C D 2012 Phys. Rev. Lett. 108 184502

    [31]

    Ma Y, Zhang G, Ma T 2022 Ultrason. Sonochem 84 105953

    [32]

    Weninger K R, Camara C G, Putterman S J 2001 Phys. Rev. E Stat Nonlin Soft Matter Phys 63 016310

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, doi: 10.7498/aps.73.20232008
    [2] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, doi: 10.7498/aps.73.20240006
    [3] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, doi: 10.7498/aps.72.20221955
    [4] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, doi: 10.7498/aps.72.20221571
    [5] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析. 物理学报, doi: 10.7498/aps.71.20212257
    [6] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, doi: 10.7498/aps.71.20211266
    [7] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, doi: 10.7498/aps.70.20211266
    [8] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, doi: 10.7498/aps.70.20210045
    [9] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 黏弹介质包裹的液体腔中气泡的动力学分析. 物理学报, doi: 10.7498/aps.70.20201876
    [10] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, doi: 10.7498/aps.69.20200764
    [11] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性. 物理学报, doi: 10.7498/aps.69.20200381
    [12] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振. 物理学报, doi: 10.7498/aps.68.20190360
    [13] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, doi: 10.7498/aps.68.20191198
    [14] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析. 物理学报, doi: 10.7498/aps.68.20190408
    [15] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, doi: 10.7498/aps.67.20171805
    [16] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, doi: 10.7498/aps.67.20181150
    [17] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, doi: 10.7498/aps.65.144301
    [18] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, doi: 10.7498/aps.64.234301
    [19] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究. 物理学报, doi: 10.7498/aps.62.134304
    [20] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, doi: 10.7498/aps.60.046202
计量
  • 文章访问数:  122
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-01

/

返回文章
返回