搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球状泡群内气泡的耦合振动

王成会 莫润阳 胡静 陈时

引用本文:
Citation:

球状泡群内气泡的耦合振动

王成会, 莫润阳, 胡静, 陈时

Coupled oscillation of bubbles in a spherical bubble cluster

Wang Cheng-Hui, Mo Run-Yang, Hu Jing, Chen Shi
PDF
导出引用
  • 振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(12 atm, 1 atm=1.01325105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 m 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.
    The pressure wave emitted by a pulsating bubble affects the motions of other bubbles, so in an acoustic field bubbles are in a state of coupled oscillation. In this paper, a cluster with cavitation bubbles inside is considered, and a mathematical model is developed to describe the dynamics of the bubbles of the same radius inside a spherical cluster when the effects of coupled oscillation are included. Based on this new model, the nonlinear acoustic response of cavitation bubbles is analyzed numerically. Comparison of our model with those in the literature, shows that bubbles are suppressed heavily. Because of the coupled oscillations of bubbles, the motions of a bubble are affected by more constraints in the system, which cause the decrease of natural frequency of the bubbles. The nonlinear acoustical response of bubbles is improved by the coupled oscillation in a bubble cluster. With the rise in number density of the cluster, the suppression of bubble oscillation is enhanced. For a cluster of 1 mm radius, when the bubble number is below 500, the change of bubble number may cause a sharp decrease of maximum radial displacement of the bubbles. In cavitation region, there are bubble clusters and large-sized bubble, and the moving large bubble can absorb small bubbles from the surface of bubble cluster, so the bubble numbers inside a cluster varies with time, which may change the acoustic response of coupled oscillating bubbles. The increase of the liquid static pressure can suppress the oscillation of bubbles too, and there is a sensitive region (1-2 atm) that affects remarkably the acoustical response of bubbles. Driving ultrasound can affect the motion of bubble greatly. The range of cavitation bubble size is narrowed when the wave frequency increases. The bubbles whose initial radii are close to 5 m are easy to be activated by ultrasound under given acoustic conditions, i.e. sizes of bubble cluster, surrounding liquid and inner gas. The cluster oscillation of bubbles may suppress the motion of individual bubbles, and weaken the cavition effects caused by individual bubbles. However, the collapse time of the bubbles may be delayed, and the cavitation region may become larger than that for a single bubble. As a result, cavitation effects are amplified in the cluster region.
      通信作者: 胡静, hjwlx@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11204168, 11274216, 11474191, 11474192) 和陕西省自然科学基金(批准号: 2014JM10130)资助的课题.
      Corresponding author: Hu Jing, hjwlx@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204168, 11274216, 11474191, 11474192), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM1013).
    [1]

    Ying C F 2007 Sci. Sin-Phys. Mech. Astron. 37 129 (in Chinese) [应崇福 2007 中国科学 37 129]

    [2]

    Bjerknes V F K 1966 Field of Force (New York: Columbia University Press) pp45-47

    [3]

    Wang C H, Lin S Y 2011 Acta Acustica 36 325 (in Chinese) [王成会, 林书玉 2011 声学学报 36 325]

    [4]

    Doinikov A A, Zavtrak S T 1996 J. Acoust. Soc. Am. 99 3849

    [5]

    An Y 2011 Phys. Rev. E 84 066313

    [6]

    Brennen C E 1995 Cavitation and Bubble Dynamics(London: Oxford University Press) pp11-32

    [7]

    Prosperetti A 1974 J. Acoust. Soc. Am. 56 878

    [8]

    Prosperetti A 1975 J. Acoust. Soc. Am. 57 810

    [9]

    Huang W, Chen W Z, Liu Y N, Gao X X 2006 Ultrasonics 22 e407

    [10]

    Van der Kroon I, Quinto-Su P A, Li F, Ohl C 2010 Phys. Rev. E 82 066311

    [11]

    Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [12]

    Hiller R A, Putterman S J, Weninger K R 1998 Phys. Rev. Lett. 80 1090

    [13]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609

    [14]

    Rezaee N, Sadighi-Bonabi R, Mirheydari M, Ebrahimi H 2011 Chin. Phys. B 20 087804

    [15]

    Ida M 2009 Phys. Rev. E79 016037

    [16]

    Zhang Y L, Zheng H R, Tang M X, Zhang D 2011 Chin. Phys. B 20 114302

    [17]

    Jiang L, Liu F, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 036312

    [18]

    Brotchie A, Grieser F, Ashokkumar M 2009 Phys. Rev. L. 102 084302

    [19]

    Birkin P R, Offin D G, Vian C J B, Leighton T G, Maksimov A O 2011 J. Acoust. Soc. Am. 130 3297

    [20]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 75 046304

    [21]

    Wang C H, Cheng J C 2013 Sci. China. Ser. G 56 1246

    [22]

    Wang C H, Cheng J C 2014 Acta. Phys. Sin.63 1343013 (in Chinese) [王成会, 程建春 2014 物理学报 62 134303]

    [23]

    An Y 2012 Phys. Rev. E 85 016305

    [24]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta. Phys. Sin.62 1343033 (in Chinese) [胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [25]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [26]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727

    [27]

    Oma R 1987 J. Acoust. Soc. Am. 82 1018

    [28]

    Shen Z Z, Wu S Y 2012 Acta Phys. Sin. 61 244301 (in Chinese) [沈壮志, 吴胜举 2012 物理学报 61 244301]

    [29]

    Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K 2011 J. Acoust. Soc. Am. 130 3233

    [30]

    Wang C H, Hu J, Cao H, Lin S Y, An S 2015 Sci. Sin-Phys. Mech. Astron. 45 064301 (in Chinese) [王成会, 胡静, 曹辉, 林书玉, 安帅 2015 中国科学: 物理学力学天文学 45 064301]

    [31]

    Van der Kroon I, Quinto-Su P A, Li F, Ohl C 2010 Phys. Rev. E 82 066311

    [32]

    Toytman I, Silbergleit A, Simanovski D, Palanker D 2010 Phys. Rev. E 82 046313

    [33]

    Cai M, Zhao S, Liang H 2010 Desalination 263 133

    [34]

    Brujan E A, Ikeda T, Yoshinaka K, Matsumoto Y 2011 Ultrason. Sonochem. 18 59

    [35]

    Kanthale P M, Gogate P R, Pandit A B, Wilhelm A M 2003 Ultrason. Sonochem. 10 181

    [36]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [37]

    Ohl C D, Kurz Thomas, Geisler R, Lindau O, Lauterborn W 1999 Phil. Trans. R Soc. Lond. 357 269

    [38]

    Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 54 408 (in Chinese) [高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越 2009 科学通报 54 408]

    [39]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [40]

    Wang C H, Lin S Y 2010 Acta Mech. Sinica. 42 1050 (in Chinese) [王成会, 林书玉 2010 力学学报 42 1050]

  • [1]

    Ying C F 2007 Sci. Sin-Phys. Mech. Astron. 37 129 (in Chinese) [应崇福 2007 中国科学 37 129]

    [2]

    Bjerknes V F K 1966 Field of Force (New York: Columbia University Press) pp45-47

    [3]

    Wang C H, Lin S Y 2011 Acta Acustica 36 325 (in Chinese) [王成会, 林书玉 2011 声学学报 36 325]

    [4]

    Doinikov A A, Zavtrak S T 1996 J. Acoust. Soc. Am. 99 3849

    [5]

    An Y 2011 Phys. Rev. E 84 066313

    [6]

    Brennen C E 1995 Cavitation and Bubble Dynamics(London: Oxford University Press) pp11-32

    [7]

    Prosperetti A 1974 J. Acoust. Soc. Am. 56 878

    [8]

    Prosperetti A 1975 J. Acoust. Soc. Am. 57 810

    [9]

    Huang W, Chen W Z, Liu Y N, Gao X X 2006 Ultrasonics 22 e407

    [10]

    Van der Kroon I, Quinto-Su P A, Li F, Ohl C 2010 Phys. Rev. E 82 066311

    [11]

    Gaitan D F, Crum L A, Church C C, Roy R A 1992 J. Acoust. Soc. Am. 91 3166

    [12]

    Hiller R A, Putterman S J, Weninger K R 1998 Phys. Rev. Lett. 80 1090

    [13]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609

    [14]

    Rezaee N, Sadighi-Bonabi R, Mirheydari M, Ebrahimi H 2011 Chin. Phys. B 20 087804

    [15]

    Ida M 2009 Phys. Rev. E79 016037

    [16]

    Zhang Y L, Zheng H R, Tang M X, Zhang D 2011 Chin. Phys. B 20 114302

    [17]

    Jiang L, Liu F, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 036312

    [18]

    Brotchie A, Grieser F, Ashokkumar M 2009 Phys. Rev. L. 102 084302

    [19]

    Birkin P R, Offin D G, Vian C J B, Leighton T G, Maksimov A O 2011 J. Acoust. Soc. Am. 130 3297

    [20]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 75 046304

    [21]

    Wang C H, Cheng J C 2013 Sci. China. Ser. G 56 1246

    [22]

    Wang C H, Cheng J C 2014 Acta. Phys. Sin.63 1343013 (in Chinese) [王成会, 程建春 2014 物理学报 62 134303]

    [23]

    An Y 2012 Phys. Rev. E 85 016305

    [24]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta. Phys. Sin.62 1343033 (in Chinese) [胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [25]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [26]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727

    [27]

    Oma R 1987 J. Acoust. Soc. Am. 82 1018

    [28]

    Shen Z Z, Wu S Y 2012 Acta Phys. Sin. 61 244301 (in Chinese) [沈壮志, 吴胜举 2012 物理学报 61 244301]

    [29]

    Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K 2011 J. Acoust. Soc. Am. 130 3233

    [30]

    Wang C H, Hu J, Cao H, Lin S Y, An S 2015 Sci. Sin-Phys. Mech. Astron. 45 064301 (in Chinese) [王成会, 胡静, 曹辉, 林书玉, 安帅 2015 中国科学: 物理学力学天文学 45 064301]

    [31]

    Van der Kroon I, Quinto-Su P A, Li F, Ohl C 2010 Phys. Rev. E 82 066311

    [32]

    Toytman I, Silbergleit A, Simanovski D, Palanker D 2010 Phys. Rev. E 82 046313

    [33]

    Cai M, Zhao S, Liang H 2010 Desalination 263 133

    [34]

    Brujan E A, Ikeda T, Yoshinaka K, Matsumoto Y 2011 Ultrason. Sonochem. 18 59

    [35]

    Kanthale P M, Gogate P R, Pandit A B, Wilhelm A M 2003 Ultrason. Sonochem. 10 181

    [36]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [37]

    Ohl C D, Kurz Thomas, Geisler R, Lindau O, Lauterborn W 1999 Phil. Trans. R Soc. Lond. 357 269

    [38]

    Gao X X, Chen W Z, Huang W, Xu J F, Xu X H, Liu Y N, Liang Y 2009 Chin. Sci. Bull. 54 408 (in Chinese) [高贤娴, 陈伟中, 黄威, 徐俊峰, 徐兴华, 刘亚楠, 梁越 2009 科学通报 54 408]

    [39]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [40]

    Wang C H, Lin S Y 2010 Acta Mech. Sinica. 42 1050 (in Chinese) [王成会, 林书玉 2010 力学学报 42 1050]

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [3] 左馨怡, 雷照康, 武耀蓉, 王成会. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [4] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [5] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [6] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [7] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性. 物理学报, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [8] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振. 物理学报, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [9] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [10] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析. 物理学报, 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [11] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
    [12] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [13] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [14] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [15] 王成会, 程建春. 弹性管中泡群内气泡的非线性声响应. 物理学报, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [16] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [17] 王成会, 程建春. 微管内气泡的受迫振动. 物理学报, 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [18] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [19] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [20] 刘海军, 安宇. 空化单气泡外围压强分布. 物理学报, 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
计量
  • 文章访问数:  6540
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-01
  • 修回日期:  2015-07-23
  • 刊出日期:  2015-12-05

/

返回文章
返回