搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微管内气泡的受迫振动

王成会 程建春

引用本文:
Citation:

微管内气泡的受迫振动

王成会, 程建春

Forced oscillations of gaseous bubbles in microtubules

Wang Cheng-Hui, Cheng Jian-Chun
PDF
导出引用
  • 在气泡-液柱一维耦合振动模型的基础上对刚性微管两侧声压不相等时管内柱状气泡的轴向一维受迫振动进行了理论探索. 声压不均匀分布不影响气泡线性振动时的共振频率, 但振动幅度受到有效声压幅值的影响. 利用逐级近似法分析了管内非线性振动气泡的基频、三倍频和三分之一分频振动的幅-频响应关系, 结果表明当驱动声压超过0.1 MPa时, 气泡振动处于非线性状态. 非线性声响应特征主要表现为:基频和分频振动幅值响应的多值性; 三倍频振动在低频区响应强于高频区; 三分频振动在大于共振频率的频域内出现的概率更大.
    Based on the model for the one-dimensional coupled oscillation of bubble-liquid column in tube, a theoretical investigation of the forced oscillation of a cylindrical gaseous bubble in a microtubule is presented. For the case that the two acoustic pressures of microtubule ends are not homogenous, the linear natural frequency is not affected, but its oscillating amplitude is influenced by the effective acoustic pressure amplitude. The relations between the amplitudes of fundamental, third and one third harmonic oscillations and the acoustic frequency are analyzed using the succession-level approximation method. Numerical results show that the bubble oscillates nonlinearly if the effective value of acoustic pressure exceeds 0.1MPa. It is found that the amplituds of fundamental, third and one third harmonic oscillations are multivalued, and the response of third harmonic oscillation is stronger in the region of lower frequencies. Furthermore, the third harmonic oscillation may be probably induced in the region of ω/ω0 ≥ 1.
    • 基金项目: 国家自然科学基金(批准号: 10904068, 10834009, 11174138, 81127901, 11174139)、 中央高校基本科研业务费专项资金(批准号: GK201002009)和陕西省自然科学基金(批准号: 2010JQ1006)资助的课题.
    • Funds: Project supported by the Natinal Natural Sience Foundation of China (Grant Nos. 10904068, 10834009, 11174138, 81127901, 11174139), the Fundamental Research Funds for the Central Universities (Grant No. GK201002009), and the Natural Science Foundation of Shaanxi Province (Grant No. 2010JQ1006).
    [1]

    Hu Y T, Qin S P, Hu T, Ferrara K, Jiang Q 2005 Int. J. Nonlin. Mech. 40 341

    [2]

    Qin S P, Hu Y T, Jiang Q 2006 IEEE. T. Ultrason. Ferr. 53 1322

    [3]

    Freund J B 2008 J. Acoust. Soc. Am. 123 2867

    [4]

    Cancelos S, Moraga F J, Lahey R T, Shain W, Parsons R H 2010 J. Acoust. Soc. Am. 128 2726

    [5]

    Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1140

    [6]

    Miao H Y, Gracewski S M, Dalecki D 2009 J. Acoust. Soc. Am. 126 2374

    [7]

    Martynov S, Stride E, Saffari N 2009J. Acoust. Soc. Am. 126 2963

    [8]

    Sassaroli E, and Hynynen K 2005 Phys. Med. Biol. 50 5293

    [9]

    Gao F R, Hu Y T, Hu H P 2007Int. J. Solids. Struct. 44 7197

    [10]

    Zhen H R, Dayton P A, Caskey C, Zhao S K, Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1978

    [11]

    Wang Z Y, Tong A Y 2008 Int. J. Therm. Sci. 47 221

    [12]

    Wang C H, Lin S Y 2010 Sci. China Phys. Mech. Astron. 53 496

    [13]

    Leighton T G, White P R, Marsden M A 1995 Acta Acust. 3 517

    [14]

    Oguz H N, Prosperetti A 1998 J. Acoust. Soc. Am. 103 3301

    [15]

    Sassaroli E, Hynynen K 2004 J. Acoust. Soc. Am. 115 3235

    [16]

    Chen X M, Prosperetti A 1998 J. Acoust. Soc. Am. 104 1389

    [17]

    Jang N W, Gracewski S M, Abrahamsen B, Buttaccio T, Halm Robert, Dalecki D 2009 J. Acoust. Soc. Am. 126 EL34

    [18]

    Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Sound (Nanjing: Nanjing University Press) p502 (in Chinease) [杜功焕, 朱哲民, 龚秀芬 2001声学基础 (南京: 南京大学出版社)第 502页]

  • [1]

    Hu Y T, Qin S P, Hu T, Ferrara K, Jiang Q 2005 Int. J. Nonlin. Mech. 40 341

    [2]

    Qin S P, Hu Y T, Jiang Q 2006 IEEE. T. Ultrason. Ferr. 53 1322

    [3]

    Freund J B 2008 J. Acoust. Soc. Am. 123 2867

    [4]

    Cancelos S, Moraga F J, Lahey R T, Shain W, Parsons R H 2010 J. Acoust. Soc. Am. 128 2726

    [5]

    Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1140

    [6]

    Miao H Y, Gracewski S M, Dalecki D 2009 J. Acoust. Soc. Am. 126 2374

    [7]

    Martynov S, Stride E, Saffari N 2009J. Acoust. Soc. Am. 126 2963

    [8]

    Sassaroli E, and Hynynen K 2005 Phys. Med. Biol. 50 5293

    [9]

    Gao F R, Hu Y T, Hu H P 2007Int. J. Solids. Struct. 44 7197

    [10]

    Zhen H R, Dayton P A, Caskey C, Zhao S K, Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1978

    [11]

    Wang Z Y, Tong A Y 2008 Int. J. Therm. Sci. 47 221

    [12]

    Wang C H, Lin S Y 2010 Sci. China Phys. Mech. Astron. 53 496

    [13]

    Leighton T G, White P R, Marsden M A 1995 Acta Acust. 3 517

    [14]

    Oguz H N, Prosperetti A 1998 J. Acoust. Soc. Am. 103 3301

    [15]

    Sassaroli E, Hynynen K 2004 J. Acoust. Soc. Am. 115 3235

    [16]

    Chen X M, Prosperetti A 1998 J. Acoust. Soc. Am. 104 1389

    [17]

    Jang N W, Gracewski S M, Abrahamsen B, Buttaccio T, Halm Robert, Dalecki D 2009 J. Acoust. Soc. Am. 126 EL34

    [18]

    Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Sound (Nanjing: Nanjing University Press) p502 (in Chinease) [杜功焕, 朱哲民, 龚秀芬 2001声学基础 (南京: 南京大学出版社)第 502页]

  • [1] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [2] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析. 物理学报, 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [3] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [4] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振. 物理学报, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [5] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [6] 王成会, 程建春. 弹性管中泡群内气泡的非线性声响应. 物理学报, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [7] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [8] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [9] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动. 物理学报, 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [10] 吴钦宽. 输电线非线性振动问题的同伦映射近似解. 物理学报, 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [11] 陈赵江, 张淑仪, 郑凯. 高功率超声脉冲激励下金属板的非线性振动现象研究. 物理学报, 2010, 59(6): 4071-4083. doi: 10.7498/aps.59.4071
    [12] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [13] 王海民, 马建敏, 张文. 两个等径蛋白质气泡在Bingham流体中振动特性. 物理学报, 2010, 59(1): 401-410. doi: 10.7498/aps.59.401
    [14] 张琪昌, 王 炜, 何学军. 研究强非线性振动系统同宿分岔问题的规范形方法. 物理学报, 2008, 57(9): 5384-5389. doi: 10.7498/aps.57.5384
    [15] 秦卫阳, 杨永锋, 王红瑾, 任兴民. 非线性振动系统的预测同步方法研究. 物理学报, 2008, 57(4): 2068-2072. doi: 10.7498/aps.57.2068
    [16] 秦卫阳, 王红瑾, 张劲夫. 一类时变非线性振动系统的同步控制方法. 物理学报, 2007, 56(8): 4361-4365. doi: 10.7498/aps.56.4361
    [17] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [18] 庞小峰. 水的非线性振动能谱的自陷理论计算. 物理学报, 1994, 43(12): 1987-1996. doi: 10.7498/aps.43.1987
    [19] 陈立群. 关于含二次非线性项受迫振动系统的混沌现象. 物理学报, 1989, 38(11): 1874-1876. doi: 10.7498/aps.38.1874
    [20] 倪皖荪, 魏荣爵. 含二次非线性项受迫振动系统中的分岔与混沌现象. 物理学报, 1985, 34(4): 503-511. doi: 10.7498/aps.34.503
计量
  • 文章访问数:  4113
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-22
  • 修回日期:  2012-04-01

微管内气泡的受迫振动

  • 1. 南京大学声学研究所, 南京 210093;
  • 2. 陕西师范大学声学研究所, 西安 710062
    基金项目: 国家自然科学基金(批准号: 10904068, 10834009, 11174138, 81127901, 11174139)、 中央高校基本科研业务费专项资金(批准号: GK201002009)和陕西省自然科学基金(批准号: 2010JQ1006)资助的课题.

摘要: 在气泡-液柱一维耦合振动模型的基础上对刚性微管两侧声压不相等时管内柱状气泡的轴向一维受迫振动进行了理论探索. 声压不均匀分布不影响气泡线性振动时的共振频率, 但振动幅度受到有效声压幅值的影响. 利用逐级近似法分析了管内非线性振动气泡的基频、三倍频和三分之一分频振动的幅-频响应关系, 结果表明当驱动声压超过0.1 MPa时, 气泡振动处于非线性状态. 非线性声响应特征主要表现为:基频和分频振动幅值响应的多值性; 三倍频振动在低频区响应强于高频区; 三分频振动在大于共振频率的频域内出现的概率更大.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回