搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蜂窝晶格声子晶体的双频带声拓扑绝缘体

贾鼎 葛勇 袁寿其 孙宏祥

引用本文:
Citation:

基于蜂窝晶格声子晶体的双频带声拓扑绝缘体

贾鼎, 葛勇, 袁寿其, 孙宏祥

Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal

Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang
PDF
HTML
导出引用
  • 基于齿轮形散射体的蜂窝晶格声子晶体, 研究设计赝自旋相关的双频带声拓扑绝缘体. 选取不同的散射体结构参数, 可以获得蜂窝晶格声子晶体的四重偶然简并狄拉克点与声拓扑相变. 利用两种不同拓扑相的蜂窝晶格声子晶体设计实现声拓扑波导结构, 并实验验证了赝自旋相关的边缘模式鲁棒性. 此外, 保持蜂窝晶格声子晶体的结构不变, 同时可以在高频区域获得四重偶然简并狄拉克点与声拓扑相变. 所设计的双频带声拓扑绝缘体在多频带声通讯与声信息处理方面具有潜在的应用前景.
    Based on honeycomb-lattice sonic crystals with gear-like scatterers, we study and design a pseudospin-dependent dual-band acoustic topological insulator. Compared with cylindrical scatterers with only a single tunable structure parameter (radius), there exist four tunable parameters for the gear scatterer, which enables the sonic crystal to realize four-fold accidental degeneracy at two different frequencies simultaneously. By changing structure parameters of the gear-like scatterers, we can obtain topological phase transitions between two sonic crystals. Based on this, we design acoustic topological waveguides based on two honeycomb-lattice sonic crystals with different topological phases, and introduce two kinds of defects (a lattice disorder and a bend) into the topological waveguide near the domain wall. Numerical simulations show that pseudospin edge states almost immune to two types of defects and can pass through the topological waveguides with negligible backscatterings. Compared with the results for the topological waveguide without defects, the measured transmission spectra are almost unchanged with the two types of defects, which further experimentally verify the robustness of pseudospin-dependent edge states. Additionally, by keeping the structure of the sonic crystals unchanged, we can also obtain another four-fold accidental degenerate Dirac point and the corresponding topological sound phase transitions in the high-frequency region. The simulations show that there also exists a pair of edge states in the overlapped bulk bandgap of the two sonic crystals in the high-frequency region. It is worth noting that the tiny gap between two edge states is larger than that in the low-frequency region, which may arise from the greater difference between the distributions of pressure eigenfunction of two sonic crystals. The proposed dual-band acoustic topology insulator has potential applications in multi-band sound communication and sound information processing.
      通信作者: 孙宏祥, jsdxshx@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774137, 51779107)、中国博士后科学基金(批准号: 2017M621643)、 江苏省高校自然科学研究项目(批准号: 18KJB140003)和声场声信息国家重点实验室开放课题(批准号: SKLOA201813)资助的课题
      Corresponding author: Sun Hong-Xiang, jsdxshx@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774137, 51779107), the China Postdoctoral Science Foundation (Grant No. 2017M621643), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 18KJB140003), and the State Key Laboratory of Acoustics, Chinese Academy of Sciences, China (Grant No. SKLOA201813)
    [1]

    Yang Z J, Gao F, Shi X, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [2]

    Khanikaev A B, Fleury R, Mousavi S H, Alù A 2015 Nat. Commun. 6 8260Google Scholar

    [3]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [4]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021Google Scholar

    [5]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [6]

    Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744Google Scholar

    [7]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904Google Scholar

    [8]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Han J, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [9]

    Wei Q, Tian Y, Zuo S Y, Cheng Y, Liu X J 2017 Phys. Rev. B 95 094305Google Scholar

    [10]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [11]

    Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J, Liu J 2017 Phys. Rev. B 96 094106Google Scholar

    [12]

    Wen X H, Qiu C Y, Lu J Y, He H L, Ke M Z, Liu Z Y 2018 J. Appl. Phys. 123 091703Google Scholar

    [13]

    Yang Y H, Yang Z J, Zhang B L 2018 J. Appl. Phys. 123 091713Google Scholar

    [14]

    Zhang Z W, Tian Y, Cheng Y, Wei Q, Liu X J, Christensen J 2018 Phys. Rev. Appl. 9 034032Google Scholar

    [15]

    Zhang Z W, Tian Y, Wang Y H, Gao, S X, Cheng Y, Liu X J, Christensen J 2018 Adv. Mater. 30 1803229Google Scholar

    [16]

    Lu J Y, Qiu C Y, Deng W Y, Huang X Q, Li F, Zhang F, Chen S Q, Liu Z Y 2018 Phys. Rev. Lett. 120 116802Google Scholar

    [17]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752Google Scholar

    [18]

    Jia D, Sun H X, Yuan S Q, Zhang C, Liu X J 2019 Appl. Phys. Express 12 044003Google Scholar

    [19]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [20]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303Google Scholar

    [21]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [22]

    Jia D, Sun H.X, Xia J P, Yuan S Q, Liu X J, Zhang C 2018 New J. Phys 20 093027Google Scholar

    [23]

    王健, 吴世巧, 梅军 2017 物理学报 66 224301Google Scholar

    Wang J, Wu S Q, Mei J 2017 Acta Phys. Sin. 66 224301Google Scholar

    [24]

    Li F, Huang X Q, Lu J Y, Ma J H, Liu Z Y 2018 Nat. Phys. 14 30Google Scholar

    [25]

    He H L, Qiu C Y, Ye L P, Cai X X, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2018 Nature 560 61Google Scholar

    [26]

    Ge H, Ni X, Tian Y, Gupta S K, Lu M H, Lin X, Huang W D, Chan C T, Chen Y F 2018 Phys. Rev. Appl. 10 014017Google Scholar

    [27]

    Yang Y H, Sun H X, Xia J P, Xue H R, Gao Z, Ge Y, Jia D, Yuan S Q, Chong Y D, Zhang B L 2019 Nat. Phys. 15 645Google Scholar

    [28]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nat. Mater. 18 108Google Scholar

    [29]

    Ni X, Weiner M, Alù A, Khanikaev A B 2019 Nat. Mater. 18 113Google Scholar

    [30]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [31]

    Sun Y Y, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Adv.Sci. 6 1901307Google Scholar

    [32]

    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y 2018 Phys. Rev. Appl. 10 014016Google Scholar

    [33]

    Huang Y L, Sun H X, Xia J P, Yuan S Q, Ding X L 2016 Appl. Phys. Lett. 109 013501Google Scholar

    [34]

    Sun H X, Yuan S Q, Zhang S Y 2015 Appl. Phys. Lett. 107 213505Google Scholar

    [35]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

  • 图 1  (a)基于齿轮形散射体组成的蜂窝晶格声子晶体原胞; (b)声子晶体I(r = 0.3671b, R = 0.455b, θ = 20°和α = 15.67°)的色散关系

    Fig. 1.  (a) Schematic of an airborne honeycomb-lattice sonic crystal (SC) composed of gear-like rods; (b) dispersion relation of SC-I.

    图 2  声子晶体(a) II (r = 0.375b, R = 0.477b, θ = 26°和α = 22°)与(b) III (r = 0.35b, R = 0.44b, θ = 20°和α = 0°)对应的色散关系; (c)声子晶体II与III在布里渊区中心的本征模式声压场分布

    Fig. 2.  Dispersion relations of (a) SC-II and (b) SC-III; (c) distributions of pressure field for eigenmodes at Brillouin zone center of SC-II and SC-III.

    图 3  (a)声子晶体II与III组成的超原胞结构, 红虚线表示两种声子晶体之间的界面; (b)超原胞对应的色散关系; (c)超原胞的对称模S与反对称模A声压本征场分布(图(b)中N点, k|| = 0.05); (d)超原胞的边缘模式声能流场分布(图(b)中M点与N点, k|| = ± 0.05)

    Fig. 3.  (a) Schematic of a supercell composed of SC-II and SC-III. Red dashed line represents the domain wall between two SCs; (b) dispersion relation of the supercell; (c) simulated pressure eigenfunctions (S and A modes) of the supercell at point N (k|| = 0.05) in Fig. (b); (d) simulated acoustic energy flow for pseudospin-dependent edge modes at points M and N (k|| = ± 0.05) in Fig. (b).

    图 4  (a)基于声子晶体II与III的声拓扑波导样品, 红虚线表示两种声子晶体的界面. 数值模拟频率为9.1 kHz (体带隙内)的声波通过三种类型的拓扑波导产生的声能量密度场分布, 三种拓扑波导分别对应(b)无缺陷, 含内置(c)无序与(d)弯曲缺陷. 绿色星与箭头分别表示声源位置和声传播方向

    Fig. 4.  (a) Photograph of a topological waveguide composed of SC-II and SC-III. Red dashed line represents the domain wall of two SCs. Simulated distributions of acoustic intensity field at 9.1 kHz (within bulk band gap) through topological waveguides with three different configurations, corresponding to (b) without defects, and with (c) a disorder and (d) a bend. Green star and arrows represent source positions and propagation directions.

    图 5  (a)实验装置示意图; (b)实验测量无缺陷与内置无序与弯曲缺陷的声拓扑波导对应的声透射谱; (c)超原胞在室温为303 K对应的色散关系

    Fig. 5.  (a) Experimental setup; (b) measured transmission spectra for topological waveguides without and with two types of defects; (c) dispersion relation of the supercell at 303 K.

    图 6  声子晶体(a) I, (b) II和(c) III在高频区间(24.44 kHz左右)的色散关系; (d)高频区间对应的声子晶体II与III在布里渊区中心的本征声压场分布

    Fig. 6.  Dispersion relations of (a) SC-I, (b) SC-II and (c) SC-III in high-frequency region (around 24.44 kHz); (d) distributions of pressure field for eigenmodes at Brillouin zone center of SC-II and SC-III in high-frequency region.

    图 7  超原胞在高频区间(24.44 kHz左右)的色散关系

    Fig. 7.  Dispersion relations of a supercell in high-frequency region (around 24.44 kHz).

  • [1]

    Yang Z J, Gao F, Shi X, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [2]

    Khanikaev A B, Fleury R, Mousavi S H, Alù A 2015 Nat. Commun. 6 8260Google Scholar

    [3]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [4]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021Google Scholar

    [5]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [6]

    Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744Google Scholar

    [7]

    He C, Li Z, Ni X, Sun X C, Yu S Y, Lu M H, Liu X P, Chen Y F 2016 Appl. Phys. Lett. 108 031904Google Scholar

    [8]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Han J, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [9]

    Wei Q, Tian Y, Zuo S Y, Cheng Y, Liu X J 2017 Phys. Rev. B 95 094305Google Scholar

    [10]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [11]

    Xia B Z, Liu T T, Huang G L, Dai H Q, Jiao J R, Zang X G, Yu D J, Zheng S J, Liu J 2017 Phys. Rev. B 96 094106Google Scholar

    [12]

    Wen X H, Qiu C Y, Lu J Y, He H L, Ke M Z, Liu Z Y 2018 J. Appl. Phys. 123 091703Google Scholar

    [13]

    Yang Y H, Yang Z J, Zhang B L 2018 J. Appl. Phys. 123 091713Google Scholar

    [14]

    Zhang Z W, Tian Y, Cheng Y, Wei Q, Liu X J, Christensen J 2018 Phys. Rev. Appl. 9 034032Google Scholar

    [15]

    Zhang Z W, Tian Y, Wang Y H, Gao, S X, Cheng Y, Liu X J, Christensen J 2018 Adv. Mater. 30 1803229Google Scholar

    [16]

    Lu J Y, Qiu C Y, Deng W Y, Huang X Q, Li F, Zhang F, Chen S Q, Liu Z Y 2018 Phys. Rev. Lett. 120 116802Google Scholar

    [17]

    Mei J, Chen Z G, Wu Y 2016 Sci. Rep. 6 32752Google Scholar

    [18]

    Jia D, Sun H X, Yuan S Q, Zhang C, Liu X J 2019 Appl. Phys. Express 12 044003Google Scholar

    [19]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [20]

    Zhang Z W, Wei Q, Cheng Y, Zhang T, Wu D J, Liu X J 2017 Phys. Rev. Lett. 118 084303Google Scholar

    [21]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [22]

    Jia D, Sun H.X, Xia J P, Yuan S Q, Liu X J, Zhang C 2018 New J. Phys 20 093027Google Scholar

    [23]

    王健, 吴世巧, 梅军 2017 物理学报 66 224301Google Scholar

    Wang J, Wu S Q, Mei J 2017 Acta Phys. Sin. 66 224301Google Scholar

    [24]

    Li F, Huang X Q, Lu J Y, Ma J H, Liu Z Y 2018 Nat. Phys. 14 30Google Scholar

    [25]

    He H L, Qiu C Y, Ye L P, Cai X X, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2018 Nature 560 61Google Scholar

    [26]

    Ge H, Ni X, Tian Y, Gupta S K, Lu M H, Lin X, Huang W D, Chan C T, Chen Y F 2018 Phys. Rev. Appl. 10 014017Google Scholar

    [27]

    Yang Y H, Sun H X, Xia J P, Xue H R, Gao Z, Ge Y, Jia D, Yuan S Q, Chong Y D, Zhang B L 2019 Nat. Phys. 15 645Google Scholar

    [28]

    Xue H R, Yang Y H, Gao F, Chong Y D, Zhang B L 2019 Nat. Mater. 18 108Google Scholar

    [29]

    Ni X, Weiner M, Alù A, Khanikaev A B 2019 Nat. Mater. 18 113Google Scholar

    [30]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [31]

    Sun Y Y, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Adv.Sci. 6 1901307Google Scholar

    [32]

    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y 2018 Phys. Rev. Appl. 10 014016Google Scholar

    [33]

    Huang Y L, Sun H X, Xia J P, Yuan S Q, Ding X L 2016 Appl. Phys. Lett. 109 013501Google Scholar

    [34]

    Sun H X, Yuan S Q, Zhang S Y 2015 Appl. Phys. Lett. 107 213505Google Scholar

    [35]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

  • [1] 蒋婧, 王小云, 孔鹏, 赵鹤平, 何兆剑, 邓科. 声学四极子拓扑绝缘体中的位错态. 物理学报, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [3] 胡晨阳, 梁家洛, 郑日翌, 陆久阳, 邓伟胤, 黄学勤, 刘正猷. 一维合成维度水基声子晶体. 物理学报, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [4] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测. 物理学报, 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [5] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [6] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [7] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [8] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [9] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [10] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [11] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [12] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性. 物理学报, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [13] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [14] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [15] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [16] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [17] 杨怀, 王春华, 郭小蓉. 基于正六边形多开口的新型双频带左手材料. 物理学报, 2014, 63(1): 014103. doi: 10.7498/aps.63.014103
    [18] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [19] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [20] 唐明春, 肖绍球, 邓天伟, 王多, 柏艳英, 金大鹏, 王秉中. 一种新颖的变异开口谐振环双频带磁谐振特异材料. 物理学报, 2011, 60(6): 064101. doi: 10.7498/aps.60.064101
计量
  • 文章访问数:  12573
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-19
  • 修回日期:  2019-09-17
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回