搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型二维三组元压电声子晶体板的缺陷态及振动能量回收

孙伟彬 王婷 孙小伟 康太凤 谭自豪 刘子江

引用本文:
Citation:

新型二维三组元压电声子晶体板的缺陷态及振动能量回收

孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江

Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate

Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang
PDF
HTML
导出引用
  • 设计了一种由包裹有机玻璃涂层的四棱柱形压电材料按正方形晶格周期性连接在四个环氧树脂短板上构成的1×5新型二维压电声子晶体板, 并利用超元胞法结合有限元方法分别计算了完美声子晶体板和缺陷声子晶体板的能带结构和传输损失. 通过改变施加在压电散射体上下表面的电边界条件, 形成点缺陷波导, 以限制弹性波能量流, 该声子晶体板克服了材料参数和结构参数已确定的情况下振动波导方向不可变的局限性. 压电效应有利于完全带隙的扩大, 当缺陷态的频率出现在带隙内时, 缺陷态响应频率范围随之扩大, 因此可以收集更宽频率范围的机械能. 用振动能量回收电路连接缺陷处压电片上下表面的电极, 能够将振动所产生的机械能转化为电能.
    The band structure and transmission characteristics of a new two-dimensional (2D) piezoelectric phononic crystal plate consisting of four epoxy short plates periodically connected with a square lattice of a prismatic piezoelectric material coated with plexiglass are investigated by supercell method and finite element method. By changing the electric boundary conditions imposed on the upper and lower surfaces of piezoelectric scatterers, a point defect waveguide with adjustable paths is formed, which overcomes the limitation of immutability in the direction of the vibration waveguide, with material and structural parameters fixed. Then the controlling of the piezoelectric effect can change the material parameters of piezoelectric components in phononic crystals, showing that the piezoelectric constants have a great influence on the complete bandgap, which is beneficial to the formation of defect states; when the frequency of the defect state appears in the band gap, the frequency-responding range of the defect state expands. The analysis of the displacement vector field indicates that the strain energy in the resonance of the new structure is almost completely limited to the upper and lower surfaces of the central piezoelectric scatterer. We use the recycling circuit to connect the electrodes on the upper and lower surfaces of the piezoelectric sheet. At this time, the output electrical energy can supply the power to the DC load, and the mechanical energy of vibration can be converted into electrical energy. The results of this work provide a reference for the self-powered technology of waveguide and wireless sensor device with adjustable path.
      通信作者: 孙小伟, sunxw_lzjtu@yeah.net ; 刘子江, liuzj_lzcu@163.com
    • 基金项目: 国家自然科学基金(批准号: 51562021)、兰州交通大学优秀科研团队(批准号: 201803)和兰州交通大学“百名青年优秀人才培养计划”资助的课题
      Corresponding author: Sun Xiao-Wei, sunxw_lzjtu@yeah.net ; Liu Zi-Jiang, liuzj_lzcu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51562021), the Excellent Research Team of Lanzhou Jiaotong University, China (Grant No. 201803), and the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China.
    [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [2]

    Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez J V, Meseguer F, Llinares J 1999 Phys. Rev. E 60 R6316Google Scholar

    [3]

    Wu F G, Liu Z Y, Liu Y Y 2004 Phys. Rev. E 69 066609Google Scholar

    [4]

    Lv H Y, Tian X Y, Wang M Y, Li D C 2013 Appl. Phys. Lett. 102 034103Google Scholar

    [5]

    Fox L, Zhang X 2011 Phys. Rev. B 83 214304Google Scholar

    [6]

    Khelif A, Djafari-Rouhani B, Vasseur J O, Deymier P A 2003 Phys. Rev. B 68 024302

    [7]

    Zhao J F, Marchal R, Bonello B, Boyko O 2012 Appl. Phys. Lett. 101 261905Google Scholar

    [8]

    Jin Y B, Torrent D, Pennec Y, Pan Y D, Djafari-Rouhani B 2015 J. Appl. Phys. 117 244904Google Scholar

    [9]

    Kim M, Hong S, Miller D J, Dugundji J, Wardle B L 2011 Appl. Phys. Lett. 99 24

    [10]

    Wu L Y, Chen L W, Liu C M 2009 Phys. Lett. A 373 1189Google Scholar

    [11]

    Sodano H A, Inman D J, Park G 2004 Shock Vib. Dig. 36 197Google Scholar

    [12]

    Anton S R, Sodano H A 2007 Smart Mater. Struct. 16 204

    [13]

    Taylor G W, Burns J R, Kammann S M, Powers W B, Welsh T R 2001 IEEE J. Ocean. Eng. 26 539Google Scholar

    [14]

    Priya S, Chen C T, Fye D, Zahnd J 2005 J. Appl. Phys. 2 44

    [15]

    Priya S 2005 Appl. Phys. Lett. 87 184101Google Scholar

    [16]

    Yu K P, Chen T N, Wang X P 2013 J. Appl. Phys. 416 12

    [17]

    Hsu J C 2012 Jpn. J. Appl. Phys. 51 07GA04Google Scholar

    [18]

    Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V 2006 Phys. Rev. E 74 046610Google Scholar

    [19]

    Wang W C, Chen L W, Liu C M 2010 Smart Mater. Struct. 19 045016Google Scholar

    [20]

    Lee K Y, Gupta M K, Kim S W 2015 Nano Energy 14 139Google Scholar

    [21]

    Poulin G, Sarraute E, Costa F 2004 Sens. Actuators 116 461Google Scholar

    [22]

    Roundy S, Leland E 2005 IEEE Pervasive Comput. 4 28

    [23]

    Lu F, Lee H P, Lim S P 2004 Smart Mater. Struct. 13 57Google Scholar

    [24]

    Horowitz S B, Sheplak M, Cattafesta III L N, Nishida T 2006 J. Micromech. Microeng. 16 174Google Scholar

    [25]

    Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M 2008 J. Acoust. Soc. Am. 123 1983Google Scholar

    [26]

    Wu L Y, Chen L W, Liu C M 2009 Appl. Phys. Lett. 95 013506Google Scholar

    [27]

    Qi S B, Oudich M, Li Y, Assouar B 2016 Appl. Phys. Lett. 108 263501Google Scholar

    [28]

    Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar

    [29]

    Park C S, Shin Y C, Jo S H, Yoon H J, Choi W, Younb B D, Kim M 2019 Nano Energy 57 327Google Scholar

    [30]

    廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬 2018 物理学报 67 214208Google Scholar

    Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B 2018 Acta Phys. Sin. 67 214208Google Scholar

    [31]

    COMSOL Multiphysics®v.5.3.cn.comsol.com. COMSOL AB, Stockholm, Sweden. http://cn.comsol.com/support/knowledge base/1223/[2018-1-1]

  • 图 1  1 × 5超元胞二维压电声子晶体板及其初基原胞示意图 (a) 1 × 5超胞; (b)原胞立体图; (c)原胞平面图; (d)第一布里渊区(阴影部分为不可约布里渊区)

    Fig. 1.  1 × 5 supercell two-dimensional piezoelectric phonon crystal plate and its primary cells: (a) The supercell plan; (b) the protocell stereogram; (c) the protocell floor plan; (d) the first Brillouin zone (the shadow part is the irreducible brillouin zone).

    图 2  用于计算传输损失的有限结构

    Fig. 2.  The finite structure for the calculation of the transmission loss.

    图 3  完美和缺陷周期性结构压电声子晶体板的能带结构示意图

    Fig. 3.  Schematic diagram of energy band structure of piezoelectric phononic crystal plate with perfect and periodic defect structures.

    图 4  完美和缺陷周期性结构压电声子晶体板传输特性对比示意图

    Fig. 4.  Schematic diagram of transmission characteristics of piezoelectric phonon crystal plates with perfect and periodic defect structures.

    图 5  1 × 5超元胞的两种不同点缺陷位置传输损失和能带结构 (a)点缺陷为模式B; (b)点缺陷为模式C

    Fig. 5.  The position transmission loss and band structures of two different defects in the 1 × 5 supercells: (a) The point defect is at pattern B; (b) the point defect is at pattern C.

    图 6  超元胞的三种不同点缺陷位置的传输特性对比

    Fig. 6.  Comparison diagram of transmission characteristics of three different defect locations of the supercell.

    图 7  压电声子晶体板缺陷态处于三种不同位置的位移矢量场

    Fig. 7.  Displacement vector fields of piezoelectric phonon crystal plates with defect states at three different positions.

    图 8  压电常数对声子晶体板传输特性的影响

    Fig. 8.  Influence of piezoelectric constant on the transmission characteristics of phonon crystal plates.

    图 9  压电常数e''对第五和第六完全带隙上边缘和下边缘(即缺陷态)的影响

    Fig. 9.  Effect of piezoelectric constant e'' on upper and lower edge (i.e. defect state) of fifth and sixth complete bandgap.

    图 10  振动能量回收整流电路原理图

    Fig. 10.  Vibration energy recovery circuit diagram.

    图 11  压电散射体上下表面电压波形图

    Fig. 11.  Voltage waveform of upper and lower surface of piezoelectric scatterer.

    图 12  三种不同点缺陷位置的电阻R输出功率随激励电压的变化示意图

    Fig. 12.  Schematic diagram of resistance R output power varying with excitation voltage at three different defect positions

    表 1  压电材料0.27PIN-0.4PMN-0.33PT的参数

    Table 1.  Piezoelectric material parameters of 0.27PIN-0.4PMN-0.33PT.

    密度ρ/kg·m–3 弹性常数Cij/1010 N·m–2 压电常数e/C·m–2 介电常数ε/10–11 F·m–1
    C11 C12 C13 C33 C44 C66 e15 e31 e33 ε11 ε33
    8189 12.2 11.3 10.8 11.2 6.9 6.2 16.0 –2.7 18.6 4193 585
    下载: 导出CSV

    表 2  弹性材料参数

    Table 2.  Material parameters of elastic materials.

    密度ρ/kg·m–3 杨氏模量E/1010 Pa 剪切模量μ/1010 Pa
    有机玻璃 1142 0.200 0.072
    环氧树脂 1180 0.435 0.159
    下载: 导出CSV
  • [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [2]

    Caballero D, Sánchez-Dehesa J, Rubio C, Mártinez-Sala R, Sánchez-Pérez J V, Meseguer F, Llinares J 1999 Phys. Rev. E 60 R6316Google Scholar

    [3]

    Wu F G, Liu Z Y, Liu Y Y 2004 Phys. Rev. E 69 066609Google Scholar

    [4]

    Lv H Y, Tian X Y, Wang M Y, Li D C 2013 Appl. Phys. Lett. 102 034103Google Scholar

    [5]

    Fox L, Zhang X 2011 Phys. Rev. B 83 214304Google Scholar

    [6]

    Khelif A, Djafari-Rouhani B, Vasseur J O, Deymier P A 2003 Phys. Rev. B 68 024302

    [7]

    Zhao J F, Marchal R, Bonello B, Boyko O 2012 Appl. Phys. Lett. 101 261905Google Scholar

    [8]

    Jin Y B, Torrent D, Pennec Y, Pan Y D, Djafari-Rouhani B 2015 J. Appl. Phys. 117 244904Google Scholar

    [9]

    Kim M, Hong S, Miller D J, Dugundji J, Wardle B L 2011 Appl. Phys. Lett. 99 24

    [10]

    Wu L Y, Chen L W, Liu C M 2009 Phys. Lett. A 373 1189Google Scholar

    [11]

    Sodano H A, Inman D J, Park G 2004 Shock Vib. Dig. 36 197Google Scholar

    [12]

    Anton S R, Sodano H A 2007 Smart Mater. Struct. 16 204

    [13]

    Taylor G W, Burns J R, Kammann S M, Powers W B, Welsh T R 2001 IEEE J. Ocean. Eng. 26 539Google Scholar

    [14]

    Priya S, Chen C T, Fye D, Zahnd J 2005 J. Appl. Phys. 2 44

    [15]

    Priya S 2005 Appl. Phys. Lett. 87 184101Google Scholar

    [16]

    Yu K P, Chen T N, Wang X P 2013 J. Appl. Phys. 416 12

    [17]

    Hsu J C 2012 Jpn. J. Appl. Phys. 51 07GA04Google Scholar

    [18]

    Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V 2006 Phys. Rev. E 74 046610Google Scholar

    [19]

    Wang W C, Chen L W, Liu C M 2010 Smart Mater. Struct. 19 045016Google Scholar

    [20]

    Lee K Y, Gupta M K, Kim S W 2015 Nano Energy 14 139Google Scholar

    [21]

    Poulin G, Sarraute E, Costa F 2004 Sens. Actuators 116 461Google Scholar

    [22]

    Roundy S, Leland E 2005 IEEE Pervasive Comput. 4 28

    [23]

    Lu F, Lee H P, Lim S P 2004 Smart Mater. Struct. 13 57Google Scholar

    [24]

    Horowitz S B, Sheplak M, Cattafesta III L N, Nishida T 2006 J. Micromech. Microeng. 16 174Google Scholar

    [25]

    Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M 2008 J. Acoust. Soc. Am. 123 1983Google Scholar

    [26]

    Wu L Y, Chen L W, Liu C M 2009 Appl. Phys. Lett. 95 013506Google Scholar

    [27]

    Qi S B, Oudich M, Li Y, Assouar B 2016 Appl. Phys. Lett. 108 263501Google Scholar

    [28]

    Gao W T, Xia J P, Sun H X, Yuan S Q, Ge Y, Liu X J 2019 Appl. Phys. Express 12 044002Google Scholar

    [29]

    Park C S, Shin Y C, Jo S H, Yoon H J, Choi W, Younb B D, Kim M 2019 Nano Energy 57 327Google Scholar

    [30]

    廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬 2018 物理学报 67 214208Google Scholar

    Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B 2018 Acta Phys. Sin. 67 214208Google Scholar

    [31]

    COMSOL Multiphysics®v.5.3.cn.comsol.com. COMSOL AB, Stockholm, Sweden. http://cn.comsol.com/support/knowledge base/1223/[2018-1-1]

  • [1] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁. 物理学报, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [2] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [3] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [4] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性. 物理学报, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [5] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [6] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 物理学报, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [7] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究. 物理学报, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [8] 付志强, 林书玉, 陈时, 鲜晓军, 张小丽, 王勇. 一维指数形变截面有限周期声子晶体的研究. 物理学报, 2012, 61(19): 194301. doi: 10.7498/aps.61.194301
    [9] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [10] 刘启能. 研究一维掺杂声子晶体缺陷模的解析方法. 物理学报, 2011, 60(4): 044302. doi: 10.7498/aps.60.044302
    [11] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [12] 魏琦, 程营, 刘晓峻. 点缺陷阵列对声子晶体波导定向辐射性能的影响. 物理学报, 2011, 60(12): 124301. doi: 10.7498/aps.60.124301
    [13] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [14] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [15] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [16] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [17] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [18] 王 刚, 温激鸿, 刘耀宗, 郁殿龙, 温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247-1252. doi: 10.7498/aps.54.1247
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  10382
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-09-16
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回