搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型二维压电声子晶体板带隙可调性研究

廖涛 孙小伟 宋婷 田俊红 康太凤 孙伟彬

引用本文:
Citation:

新型二维压电声子晶体板带隙可调性研究

廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬

Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab

Liao Tao, Sun Xiao-Wei, Song Ting, Tian Jun-Hong, Kang Tai-Feng, Sun Wei-Bin
PDF
导出引用
  • 设计了一种由涂有硬质材料涂层的柱状压电散射体周期性连接在四个环氧树脂薄板上构成的具有大带宽的新型二维压电声子晶体板,并利用有限元方法计算了该声子晶体板的能带结构、传输损失谱和位移矢量场.研究表明:与二组元材料构成的传统声子晶体板相比,新设计的声子晶体板的第一完全带隙频率更低,并且带宽扩大了5倍;通过在压电体表面上施加不同的电边界条件,可以实现多条完全带隙的主动调控;压电效应对能带结构有很大的影响,并且有利于完全带隙的扩大与形成.基于带隙的可调谐性,分析了可切换路径的压电声子晶体板波导,结果表明可以通过改变电边界条件来限制弹性波能量流.
    One of the outstanding challenges in phononic crystal development is the ability to achieve bandgap tunability in a low frequency range. The introduction of piezoelectric materials into phononic crystals is an attractive technique for actively controlling the bandgaps, which is reliable, economical and light in weight. Phononic crystal possesses an artificial periodic composite structure whose elastic constant, density and sound velocity change periodically. When the elastic wave passes through a phononic crystal, special dispersion curve is formed due to the interaction among periodically arranged materials. In order to study the tunability of phononic crystal bandgap, we propose a novel two-dimensional piezoelectric phononic crystal structure possessing a wider complete bandgap, which is composed of piezoelectric materials with hard coatings periodically connected by four thin bars. The dispersion relation, transmission spectrum and displacement field are studied by using the finite element method in combination with the Bloch theorem. Numerical results show that the frequency of the first complete bandgap of the new designed phononic crystal slab is lower and the band width is enlarged by a factor of 5 compared with the band width of the traditional binary phononic crystal. Instead of changing the geometry or orientation of the phononic crystal units or inclusions, electrical boundary conditions are used to actively control the frequency bandgap. The boundary condition for electrical open circuit and short circuit are considered in this paper. With different electrical boundary conditions imposed on the surfaces of the piezoelectric inclusions, multiple complete bandgaps can be controlled actively, which means that the new designed phononic crystal structure can adapt to the vibration and noise reduction requirements under different vibration environments. The effect of piezoelectric effect on the band structure is investigated as well. The piezoelectric effect has a great influence on the band structure, with the increase of the piezoelectric constant, a part of bands move to high-frequency and the other part of the bands are kept at the original position, which means that the piezoelectric effect is of benefit to the opening of the complete bandgap. Furthermore, according to the tunability of the bandgap, the switchable piezoelectric phononic crystal slab waveguide is analyzed. Calculation shows that the electrical boundary defects can result in defect bands existing in the complete band gap, and the elastic wave energy flows can be limited by changing the applied electrical boundary conditions. This investigation is conducive to controlling the bandgaps and also reveals potential applications in designing the sensing system and different piezoelectric devices.
      通信作者: 孙小伟, sunxw_lzjtu@yeah.net
    • 基金项目: 国家自然科学基金(批准号:51562021,11464027)、甘肃省"陇原青年创新人才扶持计划"、兰州交通大学优秀科研团队(批准号:201803)和兰州交通大学"百名青年优秀人才培养计划"资助的课题.
      Corresponding author: Sun Xiao-Wei, sunxw_lzjtu@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51562021, 11464027), the Program for Longyuan Youth Innovation Talents of Gansu Province of China, the Excellent Research Team of Lanzhou Jiaotong University, China (Grant No. 201803), and the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China.
    [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Qiu C Y, Liu Z Y, Jun Z M, Shi J 2005 Appl. Phys. Lett. 87 104101

    [3]

    Cicek A, Kaya O A, Yilmaz M, Ulug B 2012 J. Appl. Phys. 111 013522

    [4]

    Zhang M D, Zhong W, Zhang X D 2012 J. Appl. Phys. 111 104314

    [5]

    Sánchez-Dehesa J, Garcia-Chocano V M, Torrent D, Cervera F, Cabrera S 2011 J. Acoust. Soc. Am. 129 1173

    [6]

    Wu T T, Wu L C, Huang Z G 2005 J. Appl. Phys. 97 094916

    [7]

    Yeh J Y 2007 Physica B 400 137

    [8]

    Robillard J F, Matar O B, Vasseur J O, Deymier P A, Stippinger M, Hladky-Hennion A C, Djafari-Rouhani B 2009 Appl. Phys. Lett. 95 124104

    [9]

    Wu L Y, Wu M L, Chen L W 2009 Smart Mater. Struct. 18 015011

    [10]

    Song G, Kelly B, Agrawal B N 2000 Smart Mater. Struct. 9 711

    [11]

    Yang Q, Wang W, Xu S, Wang Z L 2011 Nano Lett. 11 4012

    [12]

    Pan C, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L 2013 Nat. Photon. 7 752

    [13]

    Allik H, Webman K M, Hunt J T 1974 J. Acoust. Soc. Am. 56 1782

    [14]

    Ritter T A, Shrout T R, Tutwiler R, Shung K K 2002 IEEE Trans. Ultrason. Ferroelectr. 49 217

    [15]

    Zou X Y, Chen Q, Liang B, Cheng J C 2008 Smart Mater. Struct. 17 015008

    [16]

    Yang Q, Liu Y, Pan C F, Chen J, Wen X N, Wang Z L 2013 Nano Lett. 13 607

    [17]

    Yang L F, Wang Y F, Zhou Y 2012 Acta Phys. Sin. 61 107702 (in Chinese)[杨立峰, 王亚非, 周鹰 2012 物理学报 61 107702]

    [18]

    Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202 (in Chinese)[唐一璠, 林书玉 2016 物理学报 65 164202]

    [19]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [20]

    Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V 2006 Phys. Rev. E 74 046610

    [21]

    Hsu J C, Wu T T 2008 IEEE Trans. Ultrason. Ferroelectr. 55 431

    [22]

    Hsu J C 2012 Jpn. J. Appl. Phys. 51 07GA04

    [23]

    Croënne C, Ponge M F, Dubus B, Granger C 2016 J. Acoust. Soc. Am. 139 3296

    [24]

    Zou K, Ma T X, Wang Y S 2016 Ultrasonics 65 268

    [25]

    COMSOL Multiphysics 35 Manual 2018 (Stohkholm, Sweden: Comsol AB)

    [26]

    Kherraz N, Haumesser L, Levassort F, Benard P, Morvan B 2016 Appl. Phys. Lett. 108 093503

  • [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Qiu C Y, Liu Z Y, Jun Z M, Shi J 2005 Appl. Phys. Lett. 87 104101

    [3]

    Cicek A, Kaya O A, Yilmaz M, Ulug B 2012 J. Appl. Phys. 111 013522

    [4]

    Zhang M D, Zhong W, Zhang X D 2012 J. Appl. Phys. 111 104314

    [5]

    Sánchez-Dehesa J, Garcia-Chocano V M, Torrent D, Cervera F, Cabrera S 2011 J. Acoust. Soc. Am. 129 1173

    [6]

    Wu T T, Wu L C, Huang Z G 2005 J. Appl. Phys. 97 094916

    [7]

    Yeh J Y 2007 Physica B 400 137

    [8]

    Robillard J F, Matar O B, Vasseur J O, Deymier P A, Stippinger M, Hladky-Hennion A C, Djafari-Rouhani B 2009 Appl. Phys. Lett. 95 124104

    [9]

    Wu L Y, Wu M L, Chen L W 2009 Smart Mater. Struct. 18 015011

    [10]

    Song G, Kelly B, Agrawal B N 2000 Smart Mater. Struct. 9 711

    [11]

    Yang Q, Wang W, Xu S, Wang Z L 2011 Nano Lett. 11 4012

    [12]

    Pan C, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L 2013 Nat. Photon. 7 752

    [13]

    Allik H, Webman K M, Hunt J T 1974 J. Acoust. Soc. Am. 56 1782

    [14]

    Ritter T A, Shrout T R, Tutwiler R, Shung K K 2002 IEEE Trans. Ultrason. Ferroelectr. 49 217

    [15]

    Zou X Y, Chen Q, Liang B, Cheng J C 2008 Smart Mater. Struct. 17 015008

    [16]

    Yang Q, Liu Y, Pan C F, Chen J, Wen X N, Wang Z L 2013 Nano Lett. 13 607

    [17]

    Yang L F, Wang Y F, Zhou Y 2012 Acta Phys. Sin. 61 107702 (in Chinese)[杨立峰, 王亚非, 周鹰 2012 物理学报 61 107702]

    [18]

    Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202 (in Chinese)[唐一璠, 林书玉 2016 物理学报 65 164202]

    [19]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [20]

    Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V 2006 Phys. Rev. E 74 046610

    [21]

    Hsu J C, Wu T T 2008 IEEE Trans. Ultrason. Ferroelectr. 55 431

    [22]

    Hsu J C 2012 Jpn. J. Appl. Phys. 51 07GA04

    [23]

    Croënne C, Ponge M F, Dubus B, Granger C 2016 J. Acoust. Soc. Am. 139 3296

    [24]

    Zou K, Ma T X, Wang Y S 2016 Ultrasonics 65 268

    [25]

    COMSOL Multiphysics 35 Manual 2018 (Stohkholm, Sweden: Comsol AB)

    [26]

    Kherraz N, Haumesser L, Levassort F, Benard P, Morvan B 2016 Appl. Phys. Lett. 108 093503

  • [1] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [4] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [5] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [6] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [7] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [8] 唐一璠, 林书玉. LCR分流电路下压电声子晶体智能材料的带隙. 物理学报, 2016, 65(16): 164202. doi: 10.7498/aps.65.164202
    [9] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [10] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] 付志强, 林书玉, 陈时, 鲜晓军, 张小丽, 王勇. 一维指数形变截面有限周期声子晶体的研究. 物理学报, 2012, 61(19): 194301. doi: 10.7498/aps.61.194301
    [12] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [13] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [14] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [15] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [16] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [17] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [18] 王 刚, 温激鸿, 刘耀宗, 郁殿龙, 温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247-1252. doi: 10.7498/aps.54.1247
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  7467
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-05
  • 修回日期:  2018-07-12
  • 刊出日期:  2018-11-05

/

返回文章
返回