搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgNbO3压电纳米材料压-电-化学耦合研究

洪元婷 马江平 武峥 应静诗 尤慧琳 贾艳敏

引用本文:
Citation:

AgNbO3压电纳米材料压-电-化学耦合研究

洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏

Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials

Hong Yuan-Ting, Ma Jiang-Ping, Wu Zheng, Ying Jing-Shi, You Hui-Lin, Jia Yan-Min
PDF
导出引用
  • 采用水热法合成了AgNbO3压电纳米材料,表征了其压-电-化学耦合用于机械催化的物理机理.该耦合是压电效应和电化学氧化还原效应的乘积效应.经历60 min的机械振动后,AgNbO3纳米材料机械催化振动降解罗丹明B(~5 mg/L)的降解率达70%以上.压-电-化学耦合效应的中间产物强氧化的羟基自由基也被检测到,这表明压-电-化学耦合效应在实现机械催化过程中的关键作用.经过5次回收再利用,AgNbO3纳米材料的机械催化活性无明显降低.AgNbO3压电纳米材料具有高的压-电-化学耦合、高的机械催化降解率、可多次重复使用等优点,在振动降解有机染料方面具有重要的应用前景.
    In this work, the AgNbO3 piezoelectric nanomaterials are hydrothermally synthesized, and they have an average particle size of~1 m, which is obtained from scanning electron microscopy pattern. The AgNbO3 nanomaterial possesses an orthorhombic crystal structure with an mm2 point group symmetry, indicated by the X-ray powder diffraction analysis result. The piezo-electrochemical coupling of AgNbO3 is characterized, and its physical mechanism is discussed. Under an external mechanical vibration, the surfaces of the piezoelectric AgNbO3 nanomaterials will generate a large number of positive and negative electric charges. Due to the existence of spontaneous polarization, these positive and negative electrical carriers are respectively distributed on the top surface and bottom surface of AgNbO3 and can further induce the generation of some strong oxidation middle active species such as hydroxyl radicals in solution on the basis of some special chemical redox reactions, realizing the piezo-electrochemical coupling. Therefore, we can consider the piezo-electrochemical coupling as the product of the piezoelectric effect and the electrochemical redox effect. Utilizing the strong piezo-electrochemical coupling, a practical application in mechano-catalysis is further developed to decompose dye solution under a driven vibration. After experiencing~60 min vibration with AgNbO3 nanomaterial as mechano-catalyst,~70% rhodamine B (~5 mg/L) is decomposed. Prior to the vibration, the rhodamine B solution with the addition of AgNbO3 catalyst is slowly stirred for 30 min to ensure the establishment of the physical adsorptiondesorption equilibrium between catalyst and dye. It is difficult to directly exert a mechanical stress on the micro/nanoparticles. Here, an ultrasonic source with a vibration frequency of~40 kHz is employed to exert a stress to compress and stretch the AgNbO3 particles through utilizing micro-bubble collapse forces during ultrasonic cavitations, which needs the AgNbO3 particle size to be roughly identical with the diameter (~m) of micro-bubble. Our mechanocatalytic dye decomposition experiment is conducted at room-temperature and in a dark environment to avoid the influence of photocatalysis. The slight increase of temperature of the dye solution in the ultrasonic vibration process has no obvious influence on the dye decomposition efficiency, which has been confirmed from our experiment. Through a technology of fluorescence spectrum trapping, the intermediate active product in the piezo-electrochemical coupling process-the strongly oxidized hydroxyl radicals, is successfully observed. With the increase of vibration time, the number of hydroxyl radicals obviously increases, which proves that the piezo-electrochemical coupling plays a key role in our mechano-catalytic process. After using AgNbO3 catalyst in cyclic decomposition of rhodamine B 5 times, no obvious reduction in the piezo-electrochemical coupling performance occurs. The AgNbO3 nanomaterial possesses an efficient piezo-electrochemical coupling for mechano-catalysis, and it has the advantages of high decomposition efficiency and reusability, and potential applications in vibration decomposing dye.
      通信作者: 武峥, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn ; 贾艳敏, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51502266)和浙江省基础公益研究项目(批准号:LGG18E020005)资助的课题.
      Corresponding author: Wu Zheng, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn ; Jia Yan-Min, wuzheng@zjnu.edu.cn;ymjia@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51502266) and the Public Welfare Technology Application Research Project of Zhejiang Province, China (Grant No. LGG18E020005).
    [1]

    Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031

    [2]

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]

    [3]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536

    [4]

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]

    [5]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]

    [6]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [7]

    Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642

    [8]

    Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185

    [9]

    Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780

    [10]

    Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485

    [11]

    Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367

    [12]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [13]

    Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904

    [14]

    Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122

    [15]

    Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

    [16]

    Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785

    [17]

    You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531

    [18]

    Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758

    [19]

    Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]

    [20]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [21]

    Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845

    [22]

    Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441

    [23]

    Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235

    [24]

    Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907

    [25]

    Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102

    [26]

    Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265

    [27]

    You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528

    [28]

    Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102

    [29]

    You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55

    [30]

    Eddingsaas N C, Suslick K S 2006 Nature 444 163

    [31]

    Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143

    [32]

    Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343

    [33]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124

    [34]

    Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]

    [35]

    Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119

    [36]

    Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904

    [37]

    Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]

    [38]

    Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81

    [39]

    Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264

    [40]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]

    [41]

    Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618

    [42]

    Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633

  • [1]

    Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031

    [2]

    Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]

    [3]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536

    [4]

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]

    [5]

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]

    [6]

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]

    [7]

    Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642

    [8]

    Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185

    [9]

    Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780

    [10]

    Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485

    [11]

    Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367

    [12]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [13]

    Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904

    [14]

    Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122

    [15]

    Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907

    [16]

    Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785

    [17]

    You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531

    [18]

    Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758

    [19]

    Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]

    [20]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [21]

    Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845

    [22]

    Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441

    [23]

    Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235

    [24]

    Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907

    [25]

    Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102

    [26]

    Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265

    [27]

    You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528

    [28]

    Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102

    [29]

    You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55

    [30]

    Eddingsaas N C, Suslick K S 2006 Nature 444 163

    [31]

    Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143

    [32]

    Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343

    [33]

    Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124

    [34]

    Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]

    [35]

    Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119

    [36]

    Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904

    [37]

    Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]

    [38]

    Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81

    [39]

    Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264

    [40]

    Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]

    [41]

    Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618

    [42]

    Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633

  • [1] 牛佳林, 董思远, 魏永星, 靳长清, 南瑞华, 杨斌. 助溶剂法生长的AgNbO3晶体相转变特征、电学和光学性能. 物理学报, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [2] 贾艳敏, 王晓星, 张祺昌, 武峥. 压-电-化学耦合增强策略及机理研究进展. 物理学报, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [3] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [4] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [5] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [6] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [7] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [8] 朱振业. 无铅四方相钙钛矿短周期超晶格压电效应机理研究. 物理学报, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [9] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [10] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [11] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [12] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [13] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [14] 徐波, 王树林, 李来强, 李生娟. 固体颗粒的结构演化与机械力化学效应. 物理学报, 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [15] 马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究. 物理学报, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [16] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [17] 范军峰, 张 宁. Tb1-xDyxFe2-y-Fe掺杂BaTiO3多层膜中的磁电耦合. 物理学报, 2007, 56(10): 6056-6060. doi: 10.7498/aps.56.6056
    [18] 张朝辉, 雒建斌, 温诗铸. 化学机械抛光中纳米颗粒的作用分析. 物理学报, 2005, 54(5): 2123-2127. doi: 10.7498/aps.54.2123
    [19] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  7010
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-05
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

/

返回文章
返回