搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

助溶剂法生长的AgNbO3晶体相转变特征、电学和光学性能

牛佳林 董思远 魏永星 靳长清 南瑞华 杨斌

引用本文:
Citation:

助溶剂法生长的AgNbO3晶体相转变特征、电学和光学性能

牛佳林, 董思远, 魏永星, 靳长清, 南瑞华, 杨斌

Phase transition characteristics, electrical and optical properties of AgNbO3 crystals grown by flux method

Niu Jia-Lin, Dong Si-Yuan, Wei Yong-Xing, Jin Chang-Qing, Nan Rui-Hua, Yang Bin
PDF
HTML
导出引用
  • AgNbO3具有反铁电性及高的极化强度, 在智能器件领域有着重要的应用前景. 本文采用助溶剂法合成了高质量的AgNbO3单晶(最大尺寸5 mm×4 mm×4 mm), 系统研究了其相转变特征、光学和电学性能. 当AgNbO3晶体处于正交M相时, 保持着相同的畴结构; 由M2相转变至M3相时, 偏光显微镜(PLM)照片衬度变暗, 同时电导率和介电损耗明显上升. 当AgNbO3单晶由M3相到顺电O相时, 畴结构消失; 同时, 表现出明显的热滞后现象, 属于第一类相变. 室温下, AgNbO3单晶的直接带隙拟合禁带宽度为2.73 eV, 略窄于AgNbO3陶瓷. 在临界电场以下, AgNbO3单晶表现出更高的电致应变(0.076%, Em = 130 kV/cm). 在绿色激光照射下, 介电常数由70增至73, 表现出明显的光致介电效应.
    AgNbO3, with the antiferroelectric ordering and huge polarization (>50 μC/cm2), has potential applications in smart electronic devices, such as energy storage dielectrics, large displacement actuators, and electrocaloric cooling device. Large electro-strain and excellent energy storage properties have been reported in AgNbO3-based ceramics. Nevertheless, the lack of systematic research on the AbNbO3 single crystals increases the difficulty in further understanding their structure-property relationship.In this work, ${\left\langle {001} \right\rangle _c}$ oriented AgNbO3 single crystals with a large size (maximum size 5 mm×4 mm×4 mm) and high quality are successfully grown by the flux method. The phase transition characteristics are studied by the X-ray diffraction, temperature dependence of dielectric data and AC impedance, polarized light microscope photos, and differential scanning calorimetry curves. The electrical and optical properties are studied by the ferroelectric response and electro-strain response, optical absorbance spectrum and photo-dielectric effect.The AgNbO3 single crystals with the M phase exhibit the same domain structure. When the structure changes from M2 to M3, the contrast of the PLM image is darkened. Correspondingly, the conductivity and dielectric loss significantly increase, which relates to the dynamic behaviors of the carriers. Interestingly, neither exothermic peak nor endothermic peak relating to the M2-M3 transition is observed. The active energy for the M3 phase AgNbO3 single crystal is ~1.24 eV. When the structure changes from orthogonal M3 to paraelectric orthogonal O, the domain structure disappears and the contrast becomes darker. The finding indicates that the anisotropy of the crystals disappears. At the same time, an obvious thermal hysteresis observed in the DSC curve reveals that the M3-O transition is first-order. At room temperature, the direct band gap of AgNbO3 single crystal is ~2.73 eV, which is slightly narrower than that of AgNbO3 ceramic. Below the critical electric field, AgNbO3 single crystal shows an electro-strain of 0.076% under Em = 130 kV/cm. The obtained electro-strain value is much higher than that of AgNbO3 ceramic under the same electric field. The relative permittivity increases from 70 to 73 under the green laser irradiation, showing an apparent photo-dielectric effect. We believe that our study can assist in the further understanding of the phase transition characteristics and physical properties in AgNbO3 single crystals.
      通信作者: 魏永星, weiyx1985@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 11704301)和陕西省自然科学基础研究计划(批准号: 2022JM212)资助的课题.
      Corresponding author: Wei Yong-Xing, weiyx1985@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11704301) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JM212).
    [1]

    Chen X, Jiang P P, Duan Z H, Hu Z G, Chen X F, Wang G S, Dong X L, Chu J H 2013 Appl. Phys. Lett. 103 192910Google Scholar

    [2]

    Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A. I, Baron A Q R, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar

    [3]

    Tian Y, Jin L, Zhang H, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina Nadezda V, Abrahamsc Isaac, Yan H X 2016 J. Mater. Chem. A. 4 17279Google Scholar

    [4]

    Rödel J, Jo W, Seifert K T P, Anton E, Granzow T, Damjanovic D 2009 J. Am. Chem. Soc. 92 1153Google Scholar

    [5]

    Luo N N, Han K, Cabral M, Liao X Z, Zhang S J, Liao C Z, Zhang G Z, Chen X Y, Feng Q, Li J F, Wei Y Z 2020 Nat. Commun. 11 4824Google Scholar

    [6]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155Google Scholar

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X Y 2017 Prog. Phys. 37 155Google Scholar

    [7]

    Kania A, Roleder K, Kugel G E, Fontana M D 1986 J. Phys. C: Solid State Phys. 19 9Google Scholar

    [8]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907Google Scholar

    [9]

    Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D 2011 Chem. Mater. 23 1643Google Scholar

    [10]

    Lu Z L, Sun D Y, Wang G, Zhao J W, Zhang B, Wang D W 2023 J. Adv. Dielectr. 13 2242006Google Scholar

    [11]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [12]

    Łukaszewski M, Kania A, Ratuszna A 1980 J. Crystal Growth 48 493Google Scholar

    [13]

    Kitanaka Y, Egawa T, Noguchi Y, Miyayama M 2016 Jpn. J. Appl. Phys. 55 10TB03Google Scholar

    [14]

    Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y, Hong J W 2021 Chin. Phys. Lett. 38 037701Google Scholar

    [15]

    Pawełczyk M 1987 Phase Transitions 8 273Google Scholar

    [16]

    Verwerft M, Van Dyck D, Brabers V A M, Van Landuyt J, Amelinckx S 1989 Phys. Status Solidi A 112 451Google Scholar

    [17]

    Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A 2004 J. Phys.: Condens. Matter 16 2795Google Scholar

    [18]

    Levin I, Krayzman V, Woicik J C, Karapetrova J, Proffen T, Tucker M G, Reaney I M 2009 Phys. Rev. B 79 104113Google Scholar

    [19]

    Ratuszna A, Pawluk J, Kania A 2003 Phase Transitions. 76 611Google Scholar

    [20]

    Kania A, Niewiadomski A, Miga S, Sumara I J, Pawlik M, Ujma Z, Koperski J, Suchanicz J 2014 J. Eur. Ceram. Soc. 34 1761Google Scholar

    [21]

    Sakurai H, Yamazoe S, Wada T 2010 Appl. Phys. Lett. 97 042901Google Scholar

    [22]

    Yashima M, Matsuyama S 2012 J. Phys. Chem. C 116 24902Google Scholar

    [23]

    Samantaray C B, Sim H, Hwang H 2005 Microelectronics J. 36 725Google Scholar

    [24]

    Pandey S K, James A R, Raman R, Chatterjee S N, Goyal A, Prakash C, Goel T C 2005 J. Phys B 369 135Google Scholar

    [25]

    Burkert F, Kreisel J, Kuntscher C A 2016 Appl. Phys. Lett. 109 182903Google Scholar

    [26]

    Wei Y X, Jin C Q, Ni R R, Zeng Y M, Gao D, Jian Z Y 2018 J. Eur. Ceram. Soc. 38 4689Google Scholar

    [27]

    Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F, García J E 2018 Nat. Photon. 12 29Google Scholar

  • 图 1  利用助溶剂法生长出的AgNbO3单晶块体, 插图为切割抛光后的试样

    Fig. 1.  AgNbO3 single crystals grown by flux method. The inset shows the cut specimen.

    图 2  AgNbO3晶体及其粉末XRD图 (a)单晶XRD; (b)粉末XRD(Pbcm)精修; (c)粉末XRD(Pmc21)精修

    Fig. 2.  X-ray diffraction patterns of AgNbO3: (a) Single-crystal XRD pattern; (b) rietveld refined powder XRD data with the Pbcm space group; (c) rietveld refined powder XRD data with the Pmc21 space group.

    图 3  AgNbO3的相转变特征 (a)介电常数与温度关系; (b)介电损耗与温度关系; (c)变温XRD图谱; (d) 不同温度下的PLM照片; (e)升降温DSC图谱

    Fig. 3.  Phase transition characteristics of AgNbO3: (a) Temperature dependence of relative permittivity; (b) temperature dependence of loss tangent; (c) XRD patterns at various temperatures; (d) PLM photos at various temperatures; (e) DSC curves on heating and cooling.

    图 4  AgNbO3晶体的(a)阻抗实部与虚部关系、 (b) Arrhenius拟合曲线及介电常数与温度的关系

    Fig. 4.  (a) Relationship between the real part and imaginary part of the impedance, and (b) Arrhenius fitting curve, and temperature dependence of relative permittivity in AgNbO3 single crystals.

    图 5  在不同场强下AgNbO3晶体的(a)极化电流-电场曲线、(b) 极化强度-电场曲线和(c)应变响应

    Fig. 5.  Loops of (a) polarization current, (b) polarization versus external electric field E and (c) strain response of AgNbO3 crystal under different ac maximum electric field

    图 6  AgNbO3晶体的光吸收谱线, 插图(a)为(αhν)2与()的关系, 插图(b)为(αhν)1/2与()的关系

    Fig. 6.  Optical absorbance spectrum of AgNbO3 single crystals, inset (a) shows the relationship of (αhν)2and (), inset (b) shows the relationship of (αhν)1/2and ()

    图 7  AgNbO3晶体在暗光下和绿激光照射下的介电常数与损耗

    Fig. 7.  Light-on (under green light illumination) and light-off values of relative permittivity and dielectric loss in AgNbO3 single crystals.

  • [1]

    Chen X, Jiang P P, Duan Z H, Hu Z G, Chen X F, Wang G S, Dong X L, Chu J H 2013 Appl. Phys. Lett. 103 192910Google Scholar

    [2]

    Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A. I, Baron A Q R, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar

    [3]

    Tian Y, Jin L, Zhang H, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina Nadezda V, Abrahamsc Isaac, Yan H X 2016 J. Mater. Chem. A. 4 17279Google Scholar

    [4]

    Rödel J, Jo W, Seifert K T P, Anton E, Granzow T, Damjanovic D 2009 J. Am. Chem. Soc. 92 1153Google Scholar

    [5]

    Luo N N, Han K, Cabral M, Liao X Z, Zhang S J, Liao C Z, Zhang G Z, Chen X Y, Feng Q, Li J F, Wei Y Z 2020 Nat. Commun. 11 4824Google Scholar

    [6]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155Google Scholar

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X Y 2017 Prog. Phys. 37 155Google Scholar

    [7]

    Kania A, Roleder K, Kugel G E, Fontana M D 1986 J. Phys. C: Solid State Phys. 19 9Google Scholar

    [8]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907Google Scholar

    [9]

    Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D 2011 Chem. Mater. 23 1643Google Scholar

    [10]

    Lu Z L, Sun D Y, Wang G, Zhao J W, Zhang B, Wang D W 2023 J. Adv. Dielectr. 13 2242006Google Scholar

    [11]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [12]

    Łukaszewski M, Kania A, Ratuszna A 1980 J. Crystal Growth 48 493Google Scholar

    [13]

    Kitanaka Y, Egawa T, Noguchi Y, Miyayama M 2016 Jpn. J. Appl. Phys. 55 10TB03Google Scholar

    [14]

    Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y, Hong J W 2021 Chin. Phys. Lett. 38 037701Google Scholar

    [15]

    Pawełczyk M 1987 Phase Transitions 8 273Google Scholar

    [16]

    Verwerft M, Van Dyck D, Brabers V A M, Van Landuyt J, Amelinckx S 1989 Phys. Status Solidi A 112 451Google Scholar

    [17]

    Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A 2004 J. Phys.: Condens. Matter 16 2795Google Scholar

    [18]

    Levin I, Krayzman V, Woicik J C, Karapetrova J, Proffen T, Tucker M G, Reaney I M 2009 Phys. Rev. B 79 104113Google Scholar

    [19]

    Ratuszna A, Pawluk J, Kania A 2003 Phase Transitions. 76 611Google Scholar

    [20]

    Kania A, Niewiadomski A, Miga S, Sumara I J, Pawlik M, Ujma Z, Koperski J, Suchanicz J 2014 J. Eur. Ceram. Soc. 34 1761Google Scholar

    [21]

    Sakurai H, Yamazoe S, Wada T 2010 Appl. Phys. Lett. 97 042901Google Scholar

    [22]

    Yashima M, Matsuyama S 2012 J. Phys. Chem. C 116 24902Google Scholar

    [23]

    Samantaray C B, Sim H, Hwang H 2005 Microelectronics J. 36 725Google Scholar

    [24]

    Pandey S K, James A R, Raman R, Chatterjee S N, Goyal A, Prakash C, Goel T C 2005 J. Phys B 369 135Google Scholar

    [25]

    Burkert F, Kreisel J, Kuntscher C A 2016 Appl. Phys. Lett. 109 182903Google Scholar

    [26]

    Wei Y X, Jin C Q, Ni R R, Zeng Y M, Gao D, Jian Z Y 2018 J. Eur. Ceram. Soc. 38 4689Google Scholar

    [27]

    Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F, García J E 2018 Nat. Photon. 12 29Google Scholar

  • [1] 陈雪莲, 申岩冰, 袁芝聪, 李恺瑞, 潘喜强. 简便合成相可调的CsPbBr3-Cs4PbBr6复合纳米晶及相转变过程的原位研究. 物理学报, 2024, 73(9): 096801. doi: 10.7498/aps.73.20240247
    [2] 南瑞华, 武春燕, 刘腾, 罗家欣, 魏永星, 坚增运. 大尺寸高质量CH3NH3PbCl3钙钛矿单晶的生长机理、相转变与光学性能. 物理学报, 2023, 72(13): 138101. doi: 10.7498/aps.72.20230097
    [3] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [4] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [5] 杨少鹏, 李娜, 李光, 史江波, 李晓苇, 傅广生. 混合溶剂对P3HT:PCBM基太阳能电池的影响. 物理学报, 2013, 62(1): 014702. doi: 10.7498/aps.62.014702
    [6] 丁航晨, 施思齐, 姜平, 唐为华. BiFeO3 结构性质与相转变的第一性原理研究. 物理学报, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [7] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 共晶形态层—棒转变的多相场法研究. 物理学报, 2009, 58(1): 650-654. doi: 10.7498/aps.58.650
    [8] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [9] 赵立竹, 申猛燕, 後藤武生. 气相法生长N-salicylideneaniline单晶及其偏振特性. 物理学报, 2001, 50(8): 1540-1544. doi: 10.7498/aps.50.1540
    [10] 高兴森, 陈晓原, 殷 江, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3相变特征. 物理学报, 1999, 48(5): 942-947. doi: 10.7498/aps.48.942
    [11] 刘家璐, 张廷庆, 罗宏伟, 严北平, 郎维和, 张宝峰. 碲溶剂法生长碲镉汞晶体的数值模拟. 物理学报, 1998, 47(2): 275-285. doi: 10.7498/aps.47.275
    [12] 韩理, 王晓辉, 于威, 董丽芳, 李晓苇, 傅广生. 电子助进热丝化学汽相沉积金刚石薄膜. 物理学报, 1997, 46(11): 2206-2214. doi: 10.7498/aps.46.2206
    [13] 余朝文, 何丕模, 徐亚伯, 齐仲甫, 李文铸. 单温度梯度气相法生长C70单晶. 物理学报, 1995, 44(3): 488-491. doi: 10.7498/aps.44.488
    [14] 赵宗源, 陈立泉. AgI(α-Fe2O3)复合离子导体相转变温度相互影响的研究. 物理学报, 1986, 35(9): 1158-1163. doi: 10.7498/aps.35.1158
    [15] 何寿安, 赵有祥, 刘家瑞, 李荫远. H+对高压处理后的β-LiIO3转变为α相的作用. 物理学报, 1983, 32(4): 466-472. doi: 10.7498/aps.32.466
    [16] 闵乃本, 洪静芬, 孙政民, 杨永顺. 直拉法LiNbO3单晶体中的旋转生长条纹. 物理学报, 1981, 30(12): 1672-1675. doi: 10.7498/aps.30.1672
    [17] 古元新, 葛培文, 赵雅琴, 胡伯清, 吴兰生, 傅全贵. X射线形貌法观察空间电荷缀饰的α—LiIO3单晶的缺陷. 物理学报, 1980, 29(6): 711-717. doi: 10.7498/aps.29.711
    [18] 刘寄浙, 金通政, 刘公强. GGG单晶的助熔生长与成核温度的确定. 物理学报, 1980, 29(1): 117-121. doi: 10.7498/aps.29.117
    [19] 邓朝德, 邵式平, 梁宏林. 溶剂变更法生长的TGS单晶的介电和热电性能. 物理学报, 1980, 29(3): 389-391. doi: 10.7498/aps.29.389
    [20] 黄本立, 裴蔼丽, 王俊德. 原子吸收光谱法及火焰光度法测定钠时几种醇类溶剂的影响. 物理学报, 1966, 22(7): 733-742. doi: 10.7498/aps.22.733
计量
  • 文章访问数:  3030
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-10-07
  • 上网日期:  2023-10-27
  • 刊出日期:  2024-02-05

/

返回文章
返回