-
AgNbO3具有反铁电性及高的极化强度, 在智能器件领域有着重要的应用前景. 本文采用助溶剂法合成了高质量的AgNbO3单晶(最大尺寸5 mm×4 mm×4 mm), 系统研究了其相转变特征、光学和电学性能. 当AgNbO3晶体处于正交M相时, 保持着相同的畴结构; 由M2相转变至M3相时, 偏光显微镜(PLM)照片衬度变暗, 同时电导率和介电损耗明显上升. 当AgNbO3单晶由M3相到顺电O相时, 畴结构消失; 同时, 表现出明显的热滞后现象, 属于第一类相变. 室温下, AgNbO3单晶的直接带隙拟合禁带宽度为2.73 eV, 略窄于AgNbO3陶瓷. 在临界电场以下, AgNbO3单晶表现出更高的电致应变(0.076%, Em = 130 kV/cm). 在绿色激光照射下, 介电常数由70增至73, 表现出明显的光致介电效应.
AgNbO3, with the antiferroelectric ordering and huge polarization (>50 μC/cm2), has potential applications in smart electronic devices, such as energy storage dielectrics, large displacement actuators, and electrocaloric cooling device. Large electro-strain and excellent energy storage properties have been reported in AgNbO3-based ceramics. Nevertheless, the lack of systematic research on the AbNbO3 single crystals increases the difficulty in further understanding their structure-property relationship. In this work, ${\left\langle {001} \right\rangle _c}$ oriented AgNbO3 single crystals with a large size (maximum size 5 mm×4 mm×4 mm) and high quality are successfully grown by the flux method. The phase transition characteristics are studied by the X-ray diffraction, temperature dependence of dielectric data and AC impedance, polarized light microscope photos, and differential scanning calorimetry curves. The electrical and optical properties are studied by the ferroelectric response and electro-strain response, optical absorbance spectrum and photo-dielectric effect.The AgNbO3 single crystals with the M phase exhibit the same domain structure. When the structure changes from M2 to M3, the contrast of the PLM image is darkened. Correspondingly, the conductivity and dielectric loss significantly increase, which relates to the dynamic behaviors of the carriers. Interestingly, neither exothermic peak nor endothermic peak relating to the M2-M3 transition is observed. The active energy for the M3 phase AgNbO3 single crystal is ~1.24 eV. When the structure changes from orthogonal M3 to paraelectric orthogonal O, the domain structure disappears and the contrast becomes darker. The finding indicates that the anisotropy of the crystals disappears. At the same time, an obvious thermal hysteresis observed in the DSC curve reveals that the M3-O transition is first-order. At room temperature, the direct band gap of AgNbO3 single crystal is ~2.73 eV, which is slightly narrower than that of AgNbO3 ceramic. Below the critical electric field, AgNbO3 single crystal shows an electro-strain of 0.076% under Em = 130 kV/cm. The obtained electro-strain value is much higher than that of AgNbO3 ceramic under the same electric field. The relative permittivity increases from 70 to 73 under the green laser irradiation, showing an apparent photo-dielectric effect. We believe that our study can assist in the further understanding of the phase transition characteristics and physical properties in AgNbO3 single crystals. -
Keywords:
- AgNbO3 single crystal /
- flux method /
- phase transition characteristics
[1] Chen X, Jiang P P, Duan Z H, Hu Z G, Chen X F, Wang G S, Dong X L, Chu J H 2013 Appl. Phys. Lett. 103 192910Google Scholar
[2] Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A. I, Baron A Q R, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar
[3] Tian Y, Jin L, Zhang H, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina Nadezda V, Abrahamsc Isaac, Yan H X 2016 J. Mater. Chem. A. 4 17279Google Scholar
[4] Rödel J, Jo W, Seifert K T P, Anton E, Granzow T, Damjanovic D 2009 J. Am. Chem. Soc. 92 1153Google Scholar
[5] Luo N N, Han K, Cabral M, Liao X Z, Zhang S J, Liao C Z, Zhang G Z, Chen X Y, Feng Q, Li J F, Wei Y Z 2020 Nat. Commun. 11 4824Google Scholar
[6] 田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155Google Scholar
Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X Y 2017 Prog. Phys. 37 155Google Scholar
[7] Kania A, Roleder K, Kugel G E, Fontana M D 1986 J. Phys. C: Solid State Phys. 19 9Google Scholar
[8] Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907Google Scholar
[9] Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D 2011 Chem. Mater. 23 1643Google Scholar
[10] Lu Z L, Sun D Y, Wang G, Zhao J W, Zhang B, Wang D W 2023 J. Adv. Dielectr. 13 2242006Google Scholar
[11] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar
Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar
[12] Łukaszewski M, Kania A, Ratuszna A 1980 J. Crystal Growth 48 493Google Scholar
[13] Kitanaka Y, Egawa T, Noguchi Y, Miyayama M 2016 Jpn. J. Appl. Phys. 55 10TB03Google Scholar
[14] Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y, Hong J W 2021 Chin. Phys. Lett. 38 037701Google Scholar
[15] Pawełczyk M 1987 Phase Transitions 8 273Google Scholar
[16] Verwerft M, Van Dyck D, Brabers V A M, Van Landuyt J, Amelinckx S 1989 Phys. Status Solidi A 112 451Google Scholar
[17] Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A 2004 J. Phys.: Condens. Matter 16 2795Google Scholar
[18] Levin I, Krayzman V, Woicik J C, Karapetrova J, Proffen T, Tucker M G, Reaney I M 2009 Phys. Rev. B 79 104113Google Scholar
[19] Ratuszna A, Pawluk J, Kania A 2003 Phase Transitions. 76 611Google Scholar
[20] Kania A, Niewiadomski A, Miga S, Sumara I J, Pawlik M, Ujma Z, Koperski J, Suchanicz J 2014 J. Eur. Ceram. Soc. 34 1761Google Scholar
[21] Sakurai H, Yamazoe S, Wada T 2010 Appl. Phys. Lett. 97 042901Google Scholar
[22] Yashima M, Matsuyama S 2012 J. Phys. Chem. C 116 24902Google Scholar
[23] Samantaray C B, Sim H, Hwang H 2005 Microelectronics J. 36 725Google Scholar
[24] Pandey S K, James A R, Raman R, Chatterjee S N, Goyal A, Prakash C, Goel T C 2005 J. Phys B 369 135Google Scholar
[25] Burkert F, Kreisel J, Kuntscher C A 2016 Appl. Phys. Lett. 109 182903Google Scholar
[26] Wei Y X, Jin C Q, Ni R R, Zeng Y M, Gao D, Jian Z Y 2018 J. Eur. Ceram. Soc. 38 4689Google Scholar
[27] Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F, García J E 2018 Nat. Photon. 12 29Google Scholar
-
图 3 AgNbO3的相转变特征 (a)介电常数与温度关系; (b)介电损耗与温度关系; (c)变温XRD图谱; (d) 不同温度下的PLM照片; (e)升降温DSC图谱
Fig. 3. Phase transition characteristics of AgNbO3: (a) Temperature dependence of relative permittivity; (b) temperature dependence of loss tangent; (c) XRD patterns at various temperatures; (d) PLM photos at various temperatures; (e) DSC curves on heating and cooling.
-
[1] Chen X, Jiang P P, Duan Z H, Hu Z G, Chen X F, Wang G S, Dong X L, Chu J H 2013 Appl. Phys. Lett. 103 192910Google Scholar
[2] Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A. I, Baron A Q R, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar
[3] Tian Y, Jin L, Zhang H, Xu Z, Wei X Y, Politova E D, Stefanovich S Y, Tarakina Nadezda V, Abrahamsc Isaac, Yan H X 2016 J. Mater. Chem. A. 4 17279Google Scholar
[4] Rödel J, Jo W, Seifert K T P, Anton E, Granzow T, Damjanovic D 2009 J. Am. Chem. Soc. 92 1153Google Scholar
[5] Luo N N, Han K, Cabral M, Liao X Z, Zhang S J, Liao C Z, Zhang G Z, Chen X Y, Feng Q, Li J F, Wei Y Z 2020 Nat. Commun. 11 4824Google Scholar
[6] 田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155Google Scholar
Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X Y 2017 Prog. Phys. 37 155Google Scholar
[7] Kania A, Roleder K, Kugel G E, Fontana M D 1986 J. Phys. C: Solid State Phys. 19 9Google Scholar
[8] Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907Google Scholar
[9] Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D 2011 Chem. Mater. 23 1643Google Scholar
[10] Lu Z L, Sun D Y, Wang G, Zhao J W, Zhang B, Wang D W 2023 J. Adv. Dielectr. 13 2242006Google Scholar
[11] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar
Hong Y T, Ma J P, Wu Z, Ying J S, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar
[12] Łukaszewski M, Kania A, Ratuszna A 1980 J. Crystal Growth 48 493Google Scholar
[13] Kitanaka Y, Egawa T, Noguchi Y, Miyayama M 2016 Jpn. J. Appl. Phys. 55 10TB03Google Scholar
[14] Zhao W, Fu Z Q, Deng J M, Li S, Han Y F, Li M R, Wang X Y, Hong J W 2021 Chin. Phys. Lett. 38 037701Google Scholar
[15] Pawełczyk M 1987 Phase Transitions 8 273Google Scholar
[16] Verwerft M, Van Dyck D, Brabers V A M, Van Landuyt J, Amelinckx S 1989 Phys. Status Solidi A 112 451Google Scholar
[17] Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A 2004 J. Phys.: Condens. Matter 16 2795Google Scholar
[18] Levin I, Krayzman V, Woicik J C, Karapetrova J, Proffen T, Tucker M G, Reaney I M 2009 Phys. Rev. B 79 104113Google Scholar
[19] Ratuszna A, Pawluk J, Kania A 2003 Phase Transitions. 76 611Google Scholar
[20] Kania A, Niewiadomski A, Miga S, Sumara I J, Pawlik M, Ujma Z, Koperski J, Suchanicz J 2014 J. Eur. Ceram. Soc. 34 1761Google Scholar
[21] Sakurai H, Yamazoe S, Wada T 2010 Appl. Phys. Lett. 97 042901Google Scholar
[22] Yashima M, Matsuyama S 2012 J. Phys. Chem. C 116 24902Google Scholar
[23] Samantaray C B, Sim H, Hwang H 2005 Microelectronics J. 36 725Google Scholar
[24] Pandey S K, James A R, Raman R, Chatterjee S N, Goyal A, Prakash C, Goel T C 2005 J. Phys B 369 135Google Scholar
[25] Burkert F, Kreisel J, Kuntscher C A 2016 Appl. Phys. Lett. 109 182903Google Scholar
[26] Wei Y X, Jin C Q, Ni R R, Zeng Y M, Gao D, Jian Z Y 2018 J. Eur. Ceram. Soc. 38 4689Google Scholar
[27] Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F, García J E 2018 Nat. Photon. 12 29Google Scholar
计量
- 文章访问数: 3030
- PDF下载量: 103
- 被引次数: 0