搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬态液相辅助无氟化学法制备YBa2Cu3O7-δ与完全[Ba-Cu-O]L液相膜:中高温热处理过程中的相转变

陶嘉琪 刘志勇 周星航 付一雪 李敏娟 蔡传兵

引用本文:
Citation:

瞬态液相辅助无氟化学法制备YBa2Cu3O7-δ与完全[Ba-Cu-O]L液相膜:中高温热处理过程中的相转变

陶嘉琪, 刘志勇, 周星航, 付一雪, 李敏娟, 蔡传兵

Transient liquid phase-assisted fluorine-free chemical fabrication of YBa2Cu3O7δ and complete [Ba-Cu-O]L liquid phase films: phase transformations during intermediate-high temperature heat treatment

TAO Jiaqi, LIU Zhiyong, ZHOU Xinghang, FU Yixue, LI Minjuan, CAI Chuanbing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 瞬态液相辅助化学溶液沉积法(TLAG-CSD)中氧分压跃升路径生长YBa2Cu3O7-δ的外延取向依赖前驱相中的钡铜比。为了探究这现象的深层机理,本文在中高温热处理过程中探究了不同氧分压、不同钡铜比组分对钡铜氧液相([Ba-Cu-O]L)以及反应中间相转变的影响。研究表明:液相的形成都具有点到面的特性;液相出现的温度差异、形态差异,主要由组分决定,氧分压只起辅助作用。Y:Ba:Cu=0:3:7(0-3-7)都先于Y:Ba:Cu=0:2:3(0-2-3)出现液相,温差在20℃(高氧分压)或40℃(低氧分压)。实验发现这两组分的中间相性状存在差异,高氧分压下中间相BaCuO2在0-3-7组分是单一特征峰,晶粒大而分散;0-2-3组分则是多特征峰,晶粒小而密集。导致0-3-7组分的液相区表面积小于0-2-3组分,进而两组分液相中Y3+过饱和度不同,造成YBCO的取向差异。最后总结得出无氟液相生成的基本模型,完全的[Ba-Cu-O]L膜可由0-2-3组分在750℃高氧分压下生成。
    The epitaxial orientation of YBa2Cu3O7-δ grown via the oxygen partial pressure jump pathway in transient liquid-phase assisted chemical solution deposition (TLAG-CSD) depends on the barium copper ratio in the precursor phase. To explore the underlying mechanism of this phenomenon, this article investigated the effects of different oxygen partial pressures and barium-to-copper ratio components on the barium-copper-oxygen liquid phase ([Ba-Cu-O]L) and the intermediate phase transition during the medium-high temperature heat treatment process. Research has shown that the formation of the liquid phase exhibits a point-to-surface characteristic; the temperature and morphological differences in the liquid phase are mainly determined by the composition, with oxygen partial pressure only playing a supporting role. Y:Ba:Cu=0:3:7 (0-3-7) components all appear before Y:Ba:Cu=0:2:3 (0-2-3) components in the liquid phase, with a temperature difference of 20℃ (high oxygen partial pressure) or 40℃ (low oxygen partial pressure). The experiment found that there are differences in the intermediate phase properties between these two components. Under high oxygen partial pressure, the intermediate phase BaCuO2 exhibits a single characteristic peak in the 0-3-7 component, with large and dispersed grains; the 0-2-3 component has multiple characteristic peaks, with small and dense grains. The surface area of the liquid phase region in the 0-3-7 component is smaller than that in the 0-2-3 component, resulting in different supersaturation levels of Y3+ in the liquid phases of the two components and causing orientation differences in YBCO. Finally, the basic model for the formation of fluorine-free liquid phase was summarized, and the complete [Ba-Cu-O]L film can be generated from the 0-2-3 component at high oxygen partial pressure at 750℃.
  • [1]

    Zhou Y H, Park D, Iwasa Y 2023Natl. Sci. Rev. 10 nwad001

    [2]

    Obradors X, Puig T 2014Supercond. Sci. Technol. 27 044003

    [3]

    Barth C, Komorowski P, Vonlanthen P, Herzog R, Tediosi R, Alessandrini M, Bonura M, Senatore C 2019Supercond. Sci. Technol. 32 075005

    [4]

    Chow C C T, Ainslie M D, Chau K T 2023Energy Rep. 9 1124

    [5]

    Favre S, Ariosa D, Yelpo C, Mazini M, Faccio R 2021Mater. Chem. Phys. 266 124507

    [6]

    Khan M Z, Rivasto E, Tikkanen J, Rijckaert H, Malmivirta M, Liedke M O, Butterling M, Wagner A, Huhtinen H, Van Driessche I, Paturi P 2019Sci. Rep. 9 15425

    [7]

    Yang T W, Wang L M 2023IEEE Trans. Appl. Supercond. 33 1

    [8]

    Chen X, Tao B, Zhao R, Yang K, Li Z, Xie T, Zhong Y, Zhang T, Xia Y 2023Mater. Lett. 330 133336

    [9]

    Chen T, Xia Y, Zhao R, Wu D, Feng Z, Yang J, Xin J, Wang W, Jin K, Tao B 2022Ceram. Int. 48 17837

    [10]

    Zhao P, Wang Y, Huang Z liang, Mao Y, Xu Y L 2015J. Cryst. Growth 415 152

    [11]

    Jin L H, Bai Y, Li C S, Feng J Q, Lei L, Zhao G Y, Gao L, Zhang P X 2019Mater. Lett. 250 34

    [12]

    Wesolowski D E, Patta Y R, Cima M J 2009Phys. C Supercond. 469 766

    [13]

    Bhuiyan M S, Paranthaman M, Salama K 2006Supercond. Sci. Technol. 19 R1

    [14]

    Chu J, Zhao Y, Khan M Z, Tang X, Wu W, Shi J, Wu Y, Huhtinen H, Suo H, Jin Z 2019Cryst. Growth Des. 19 6752

    [15]

    Soler L, Jareño J, Banchewski J, Rasi S, Chamorro N, Guzman R, Yáñez R, Mocuta C, Ricart S, Farjas J, Roura-Grabulosa P, Obradors X, Puig T 2020Nat. Commun. 11 344

    [16]

    Shi J, Zhao Y, Jiang G, Zhu J, Wu Y, Gao Y, Quan X, Yu X, Wu W, Jin Z 2021J. Eur. Ceram. Soc. 41 5223

    [17]

    Chu J, Zhao Y, Ji Y, Wu W, Shi J, Hong Z, Ma L, Suo H, Jin Z 2019J. Am. Ceram. Soc. 102 5705

    [18]

    Chu N, Liu Z, Yang Z, Tong S, Shen J, Chen J, Cai C 2022Jpn. J. Appl. Phys. 61 075509

    [19]

    Shen J J, Liu Z Y, Chen J, Zhou X H, Li Y G, Cai C B 2022J. Supercond. Nov. Magn. 35 3147

    [20]

    Saltarelli L, Gupta K, Rasi S, Kethamkuzhi A, Queraltó A, Garcia D, Gutierrez J, Farjas J, Roura-Grabulosa P, Ricart S, Obradors X, Puig T 2022ACS Appl. Mater. Interfaces 14 48582

    [21]

    Rasi S, Queraltó A, Banchewski J, Saltarelli L, Garcia D, Pacheco A, Gupta K, Kethamkuzhi A, Soler L, Jareño J, Ricart S, Farjas J, Roura‐Grabulosa P, Mocuta C, Obradors X, Puig T 2022Adv. Sci. 9 2203834

    [22]

    Vermeir P, Cardinael I, Schaubroeck J, Verbeken K, Bäcker M, Lommens P, Knaepen W, D’haen J, De Buysser K, Van Driessche I 2010Inorg. Chem. 49 4471

    [23]

    Rasi S, Soler L, Jareño J, Banchewski J, Guzman R, Mocuta C, Kreuzer M, Ricart S, Roura-Grabulosa P, Farjas J, Obradors X, Puig T 2020J. Phys. Chem. C 124 15574

    [24]

    Zhou X, Chen J, Huang R, Liu Z, Cai C 2024Colloids Surf. Physicochem. Eng. Asp. 691 133830

    [25]

    Lee J H, Lee H, Lee J W, Choi S M, Yoo S I, Moon S H 2014Supercond. Sci. Technol. 27 044018

    [26]

    Song X, Daniels G, Feldmann D M, Gurevich A, Larbalestier D 2005Nat. Mater. 4 470

    [27]

    Heinig N F, Redwing R D, Tsu I F, Gurevich A, Nordman J E, Babcock S E, Larbalestier D C 1996Appl. Phys. Lett. 69 577

    [28]

    Soler L B 2019 Doctoral Dissertation学位论文(Institut de Ciències de Materials de Barcelona - CSIC)

    [29]

    Shiohara Y, Goodilin E A 2000 Handb. Phys. Chem. Rare Earths , 2000 pp67–227

    [30]

    Zhou X, Chen J, Huang R, Tao J, Fu Y, Li M, Liu Z, Cai C 2024Colloids Surf. Physicochem. Eng. Asp. 702 135106

    [31]

    Chu P Y, Buchanan R C 1993J. Mater. Res. 8 2134

    [32]

    Nevřiva M, Pollert E, Matějková L, Tříska A 1988J. Cryst. Growth 91 434

    [33]

    Zhang W, Osamura K, Ochiai S 1990J. Am. Ceram. Soc. 73

  • [1] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, doi: 10.7498/aps.67.20170822
    [2] 史力斌, 郑 岩, 任骏原, 李明标, 张国华. YBa2Cu3O7-δ/LaAlO3和Tl2Ba2CaCu2O8/LaAlO3高温超导薄膜内的应变对其微波表面电阻影响的研究. 物理学报, doi: 10.7498/aps.57.1183
    [3] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, doi: 10.7498/aps.57.4371
    [4] 何 萌, 吕惠宾, 周岳亮, 程波林, 陈正豪, 金奎娟, 杨国桢. YBa2Cu3O7-δ/SrNb0.01Ti0.99O3 p-n结的制备及其特性. 物理学报, doi: 10.7498/aps.54.1370
    [5] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, doi: 10.7498/aps.54.5382
    [6] 刘峰, 黄钧伟, 刘伟, 肖玲, 任洪涛, 焦玉磊, 郑明辉, 阎守胜. 弱场下熔融织构YBa2Cu3O7-δ样品局域磁通蠕动的实验研究. 物理学报, doi: 10.7498/aps.50.2001
    [7] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, doi: 10.7498/aps.50.1590
    [8] 王智河, 曹效文, 方 军, 陈治友, 李可斌. YBa2Cu3O7-δ外延薄膜的不可逆线与磁通玻璃线. 物理学报, doi: 10.7498/aps.48.154
    [9] 徐克西, 周世平, 鲍家善. YBa2Cu3O7-δ外延膜中的非线性光响应. 物理学报, doi: 10.7498/aps.47.307
    [10] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势. 物理学报, doi: 10.7498/aps.47.1720
    [11] 吴柏枚, 蒋克寒, 王东进, 盛奕键, 杜英磊. YBa2Cu3O7-δ超导厚膜在35GHz频率的毫米波表面电阻. 物理学报, doi: 10.7498/aps.44.646
    [12] 袁松柳. YBa2Cu3O7-δ体系在B∥I∥c下磁场引起的电阻耗散. 物理学报, doi: 10.7498/aps.44.1268
    [13] 刘峰奇, 刘军政, 曹世勋, 程国生, 张金仓. YBa2Cu3O7-δ超导体氧缺陷的正电子寿命谱. 物理学报, doi: 10.7498/aps.44.929
    [14] 熊光成, 邹英华, 夏宗炬, 袁平, 连贵君, 李洁. 飞秒瞬态反射谱研究YBa2Cu3O7-δ费密面变化与电声子耦合. 物理学报, doi: 10.7498/aps.43.1860
    [15] 张贻瞳, 金新, 张长贵, 金继荣, 姚希贤, 吉争鸣, 孙志坚, 杨森祖. YBa2Cu3O7-δ薄膜热激发磁通蠕动研究. 物理学报, doi: 10.7498/aps.42.1174
    [16] 谢晓明, 陈廷国. YBa2Cu3O7-δ中正交-四方相变的级次. 物理学报, doi: 10.7498/aps.41.1830
    [17] 金新, 张贻瞳, 陆瑞熙, 姚希贤, 刘奉生, 牟慧麟, 吴晓祖, 周廉. Yba2Cu3O7-δ不可逆线与钉扎势的关联. 物理学报, doi: 10.7498/aps.41.123
    [18] 都有为, 邱子强, 唐焕, J. C. WALKER. 用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序. 物理学报, doi: 10.7498/aps.39.472
    [19] 汪辉, 王若桢. 高温超导材料YBa2Cu3O7-δ在可见光区的电场调制光反射光谱. 物理学报, doi: 10.7498/aps.38.145
    [20] 何振辉, 陈祖耀, 张酣, 张其瑞. Co,Zn元素对YBa2Cu3O7-δ的不同的掺杂效应. 物理学报, doi: 10.7498/aps.38.60
计量
  • 文章访问数:  66
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-27

/

返回文章
返回