搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬态液相辅助无氟化学法制备YBa2Cu3O7–δ与完全[Ba-Cu-O]L液相膜: 中高温热处理过程中的相转变

陶嘉琪 刘志勇 周星航 付一雪 李敏娟 蔡传兵

引用本文:
Citation:

瞬态液相辅助无氟化学法制备YBa2Cu3O7–δ与完全[Ba-Cu-O]L液相膜: 中高温热处理过程中的相转变

陶嘉琪, 刘志勇, 周星航, 付一雪, 李敏娟, 蔡传兵

Transient liquid phase-assisted fluorine-free chemical fabrication of YBa2Cu3O7–δ and complete [Ba-Cu-O]L liquid phase films: Phase transformations during intermediate-high temperature heat treatment

TAO Jiaqi, LIU Zhiyong, ZHOU Xinghang, FU Yixue, LI Minjuan, CAI Chuanbing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 瞬态液相辅助化学溶液沉积法(TLAG-CSD)中氧分压跃升路径生长YBa2Cu3O7–δ的外延取向依赖前驱相中的钡铜比. 为了探究这现象的深层机理, 本文在中高温热处理过程中探究了不同氧分压、不同钡铜比组分对钡铜氧液相([Ba-Cu-O]L)以及反应中间相转变的影响. 研究表明: 液相的形成都具有点到面的特性; 液相出现的温度差异、形态差异, 主要由组分决定, 氧分压只起辅助作用. Y∶Ba∶Cu = 0∶3∶7(记为0-3-7)都先于Y∶Ba∶Cu = 0∶2∶3(记为0-2-3)出现液相, 温差在20 ℃(高氧分压)或40 ℃(低氧分压). 实验发现这两组分的中间相性状存在差异, 高氧分压下中间相BaCuO2在0-3-7组分是单一特征峰, 晶粒大而分散; 0-2-3组分则是多特征峰, 晶粒小而密集. 导致0-3-7组分的液相区表面积小于0-2-3组分, 进而两组分液相中Y3+过饱和度不同, 造成YBCO的取向差异. 最后总结得出无氟液相生成的基本模型, 完全的[Ba-Cu-O]L膜可由0-2-3组分在750 ℃高氧分压下生成.
    The epitaxial orientation of YBa2Cu3O7–δ grown via the oxygen partial pressure jump pathway in transient liquid-phase assisted chemical solution deposition (TLAG-CSD) depends on the barium-to-copper ratio in the precursor phase. To explore the mechanism behind this phenomenon, in this work we investigate the effects of different oxygen partial pressures and barium-to-copper ratio components on the barium-copper-oxygen liquid phase ([Ba-Cu-O]L) and the intermediate phase transition in the medium-high temperature heat treatment process. The research shows that the formation of the liquid phase exhibits a point-to-surface characteristic; the temperature and morphological differences in the liquid phase are mainly determined by the composition, with oxygen partial pressure only playing a supporting role. Y∶Ba∶Cu = 0∶3∶7 (0-3-7) components all appear before Y∶Ba∶Cu = 0∶2∶3 (0-2-3) components in the liquid phase, with a temperature difference of 20 ℃ (high oxygen partial pressure) or 40 ℃ (low oxygen partial pressure). Experimental results indicate that there are differences in the intermediate phase properties between these two components. Under high oxygen partial pressure, the intermediate phase BaCuO2 exhibits a single characteristic peak in the 0-3-7 component, with large and dispersed grains; the 0-2-3 component has multiple characteristic peaks, with small and dense grains. The surface area of the liquid phase region in the 0-3-7 component is smaller than that in the 0-2-3 component, resulting in different supersaturation levels of Y3+ in the liquid phases of the two components and causing orientation differences in YBCO. Finally, the basic model for the formation of fluorine-free liquid phase is summarized, and the complete [Ba-Cu-O]L film can be generated from the 0-2-3 component at high oxygen partial pressure and 750 ℃.
  • 图 1  TLAG-CSD的两种路线对应的晶化反应示意图

    Fig. 1.  Schematic diagram of the crystallization reactions corresponding to the two routes of TLAG-CSD.

    图 2  [Ba-Cu-O]L薄膜的热处理过程示意图

    Fig. 2.  Schematic diagram of heat treatment process of [Ba-Cu-O]L thin film.

    图 3  Y∶Ba∶Cu = 1.5∶3∶7和Y∶Ba∶Cu = 1∶2∶3两组分薄膜在相同生长条件下YBCO的外延取向差异, 初始氧分压都为10 ppm

    Fig. 3.  Different epitaxial orientation of YBCO in Y∶Ba∶Cu = 1.5∶3∶7 and Y∶Ba∶Cu = 1∶2∶3 films grown under the same conditions, the initial oxygen partial pressures are all 10 ppm.

    图 4  $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分的液相在中高温热处理过程中的演变, 其中蓝虚线圈为液相痕迹, 红椭圆-蜂窝状为熔融凝固态, 红圆角矩形为大液相区, 橙圆角矩形为液相之间的空隙, 橙虚线标识液相间的分界线, 黄虚线圈为点状液相区

    Fig. 4.  $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, the evolution of the liquid phase of Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 during medium and high temperature heat treatment, where blue dotted circle represents liquid phase trace; red ellipse represents honeycomb molten solid state; red rounded rectangle represents large liquid phase area; orange rounded rectangle represents gap between liquid phases, orange dotted line marks the boundary between liquid phases; yellow dotted circle represents pointed liquid phase area.

    图 5  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分的液相在中高温热处理过程中的演变, 其中红虚线圈为液相间的空隙, 蓝虚线框为液相层的阶梯状分布

    Fig. 5.  Evolution of the liquid phase of two components of $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 during medium and high temperature heat treatment, where red dotted circle-the gap between the liquid phases, blue dotted frame-the stepped distribution of the liquid phase layer.

    图 6  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, 640 ℃下Y∶Ba∶Cu = 0∶3∶7组分薄膜表面的EDS元素点扫描, 显示黑色斑块区域富铜元素

    Fig. 6.  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, EDS element point scanning of the surface of the Y∶Ba∶Cu = 0∶3∶7 component film at 640 ℃ shows that the black patch area is rich in copper elements.

    图 7  示意不同组分液相形成时期的大小与分布等性状差异

    Fig. 7.  Indicate the differences in characteristics such as size and distribution during the formation of liquid phases of different components.

    图 8  $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜中高温热处理过程的物相演变, 不同温度是指淬火温度, 由于该实验氧分压属于高氧分压[28](CuO不会被还原), 因此淬火在室温中进行

    Fig. 8.  Phase evolution during high temperature heat treatment of two-component films with $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3, the different temperatures refer to the quenching temperatures, the quenching was performed at room temperature because the oxygen partial pressure in this experiment was high[28] (CuO would not be reduced).

    图 9  (a), (b) $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm, 660 ℃下Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜表面SEM图以及对应的EDS元素扫描和Ba元素的表面分布图, (c), (d) Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜的AFM扫描图像

    Fig. 9.  (a), (b) $ {P_{{{\text{O}}_{2}}}} $ = 1000 ppm: SEM images of the surface of the two-component films Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 at 660 ℃, and the corresponding EDS element scans and surface distribution of Ba elements; (c), (d) AFM scan images of the corresponding two-component films.

    图 10  $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分薄膜中高温热处理过程的物相演变, 不同温度是指淬火温度, 由于该实验氧分压属于低氧分压[28](CuO会被还原), 因此淬火是在液氮中进行

    Fig. 10.  Phase evolution during high temperature heat treatment of two-component films with $ {P_{{{\text{O}}_{2}}}} $ = 10 ppm, Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3, the different temperatures refer to the quenching temperatures, the quenching was performed in liquid nitrogen because the oxygen partial pressure in this experiment was low[28] (CuO would be reduced).

    图 11  (a)—(c)不同氧分压下, Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3两组分的BaCO3和BaCuO2特征峰面积随温度的变化, 紫虚线表示两曲线的下降斜率一致, 罗马数字表示不同的温区; (d) Ton是BaCO3的分解温度, TL是形成完全液相的温度

    Fig. 11.  (a)–(c) Characteristic peak areas of BaCO3 and BaCuO2 of Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 under different oxygen partial pressures vary with temperature, the purple dashed line indicates that the two curves have the same downward slope, and the Roman numerals represent different temperature zones; (d) Ton is the decomposition temperature of BaCO3, and TL is the temperature at which a complete liquid phase is formed.

    图 12  (a), (b) Y∶Ba∶Cu = 0∶3∶7和Y∶Ba∶Cu = 0∶2∶3组分的前驱相颗粒均匀分布示意图; (c), (d) 高、低氧分压下完全[Ba-Cu-O]L膜的形成示意图

    Fig. 12.  (a), (b) Schematic diagrams of uniform distribution of precursor phase particles of Y∶Ba∶Cu = 0∶3∶7 and Y∶Ba∶Cu = 0∶2∶3 components, respectively; (c), (d) schematic diagrams of the formation of complete [Ba-Cu-O]L film under high and low oxygen partial pressures, respectively.

  • [1]

    Zhou Y H, Park D, Iwasa Y 2023 Natl. Sci. Rev. 10 nwad001Google Scholar

    [2]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [3]

    Barth C, Komorowski P, Vonlanthen P, Herzog R, Tediosi R, Alessandrini M, Bonura M, Senatore C 2019 Supercond. Sci. Technol. 32 075005Google Scholar

    [4]

    Chow C C T, Ainslie M D, Chau K T 2023 Energy Rep. 9 1124Google Scholar

    [5]

    Favre S, Ariosa D, Yelpo C, Mazini M, Faccio R 2021 Mater. Chem. Phys. 266 124507Google Scholar

    [6]

    Khan M Z, Rivasto E, Tikkanen J, Rijckaert H, Malmivirta M, Liedke M O, Butterling M, Wagner A, Huhtinen H, Van Driessche I, Paturi P 2019 Sci. Rep. 9 15425Google Scholar

    [7]

    Yang T W, Wang L M 2023 IEEE Trans. Appl. Supercond. 33 1

    [8]

    Chen X, Tao B, Zhao R, Yang K, Li Z, Xie T, Zhong Y, Zhang T, Xia Y 2023 Mater. Lett. 330 133336Google Scholar

    [9]

    Chen T Y, Xia Y D, Zhao R P, Wu D, Feng Z P, Yang J T, Xin J J, Wang W, Jin K, Tao B W 2022 Ceram. Int. 48 17837Google Scholar

    [10]

    Zhao P, Wang Y, Huang Z L, Mao Y, Xu Y L 2015 J. Cryst. Growth 415 152Google Scholar

    [11]

    Jin L H, Bai Y, Li C S, Feng J Q, Lei L, Zhao G Y, Gao L, Zhang P X 2019 Mater. Lett. 250 34Google Scholar

    [12]

    Wesolowski D E, Patta Y R, Cima M J 2009 Phys. C Supercond. 469 766Google Scholar

    [13]

    Bhuiyan M S, Paranthaman M, Salama K 2006 Supercond. Sci. Technol. 19 R1Google Scholar

    [14]

    Chu J Y, Zhao Y, Khan M Z, Tang X, Wu W, Shi J T, Wu Y, Huhtinen H, Suo H L, Jin Z J 2019 Cryst. Growth Des. 19 6752Google Scholar

    [15]

    Soler L, Jareño J, Banchewski J, Rasi S, Chamorro N, Guzman R, Yáñez R, Mocuta C, Ricart S, Farjas J, Roura-Grabulosa P, Obradors X, Puig T 2020 Nat. Commun. 11 344Google Scholar

    [16]

    Shi J T, Zhao Y, Jiang G Y, Zhu J M, Wu Y, Gao Y S, Quan X L, Yu X, Wu W, Jin Z J 2021 J. Eur. Ceram. Soc. 41 5223Google Scholar

    [17]

    Chu J Y, Zhao Y, Ji Y T, Wu W, Shi J T, Hong Z Y, Ma L, Suo H L, Jin Z J 2019 J. Am. Ceram. Soc. 102 5705Google Scholar

    [18]

    Chu N, Liu Z Y, Yang Z, Tong S, Shen J, Chen J, Cai C B 2022 Jpn. J. Appl. Phys. 61 075509Google Scholar

    [19]

    Shen J J, Liu Z Y, Chen J, Zhou X H, Li Y G, Cai C B 2022 J. Supercond. Nov. Magn. 35 3147Google Scholar

    [20]

    Saltarelli L, Gupta K, Rasi S, Kethamkuzhi A, Queraltó A, Garcia D, Gutierrez J, Farjas J, Roura-Grabulosa P, Ricart S, Obradors X, Puig T 2022 ACS Appl. Mater. Interfaces 14 48582Google Scholar

    [21]

    Rasi S, Queraltó A, Banchewski J, Saltarelli L, Garcia D, Pacheco A, Gupta K, Kethamkuzhi A, Soler L, Jareño J, Ricart S, Farjas J, Roura‐Grabulosa P, Mocuta C, Obradors X, Puig T 2022 Adv. Sci. 9 2203834Google Scholar

    [22]

    Vermeir P, Cardinael I, Schaubroeck J, Verbeken K, Bäcker M, Lommens P, Knaepen W, D’haen J, De Buysser K, Van Driessche I 2010 Inorg. Chem. 49 4471Google Scholar

    [23]

    Rasi S, Soler L, Jareño J, Banchewski J, Guzman R, Mocuta C, Kreuzer M, Ricart S, Roura-Grabulosa P, Farjas J, Obradors X, Puig T 2020 J. Phys. Chem. C 124 15574Google Scholar

    [24]

    Zhou X H, Chen J, Huang R T, Liu Z Y, Cai C B 2024 Colloids Surf. Physicochem. Eng. Asp. 691 133830Google Scholar

    [25]

    Lee J H, Lee H, Lee J W, Choi S M, Yoo S I, Moon S H 2014 Supercond. Sci. Technol. 27 044018Google Scholar

    [26]

    Song X, Daniels G, Feldmann D M, Gurevich A, Larbalestier D 2005 Nat. Mater. 4 470Google Scholar

    [27]

    Heinig N F, Redwing R D, Tsu I F, Gurevich A, Nordman J E, Babcock S E, Larbalestier D C 1996 Appl. Phys. Lett. 69 577Google Scholar

    [28]

    Soler L B 2019 PhD Dissertation (Institut de Ciències de Materials de Barcelona - CSIC

    [29]

    Shiohara Y, Goodilin E A 2000 Handbook on the Physics and Chemistry of Rare Earths 2000 pp67–227

    [30]

    Zhou X H, Chen J, Huang R T, Tao J Q, Fu Y X, Li M J, Liu Z Y, Cai C B 2024 Colloids Surf. Physicochem. Eng. Asp. 702 135106Google Scholar

    [31]

    Chu P Y, Buchanan R C 1993 J. Mater. Res. 8 2134Google Scholar

    [32]

    Nevřiva M, Pollert E, Matějková L, Tříska A 1988 J. Cryst. Growth 91 434Google Scholar

    [33]

    Zhang W, Osamura K, Ochiai S 1990 J. Am. Ceram. Soc. 73 1958Google Scholar

  • [1] 易栖如, 熊沛雨, 王焕华, 李港, 王云开, 董恩阳, 陈雨, 沈治邦, 吴云, 袁洁, 金魁, 高琛. YBa2Cu3O7–δ薄膜微结构的同步辐射三维倒空间扫描研究. 物理学报, doi: 10.7498/aps.72.20221776
    [2] 王宏章, 李宇龙, 徐铁权, 朱子青, 马平, 王越, 甘子钊. MgO衬底上YBa2Cu3O7–$_{ \delta}$台阶边沿型约瑟夫森结的制备及特性. 物理学报, doi: 10.7498/aps.70.20201291
    [3] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, doi: 10.7498/aps.57.3132
    [4] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, doi: 10.7498/aps.57.4371
    [5] 王智河, 曹效文, 方 军, 陈治友, 李可斌. YBa2Cu3O7-δ外延薄膜的不可逆线与磁通玻璃线. 物理学报, doi: 10.7498/aps.48.154
    [6] 徐克西, 周世平, 鲍家善. YBa2Cu3O7-δ外延膜中的非线性光响应. 物理学报, doi: 10.7498/aps.47.307
    [7] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势. 物理学报, doi: 10.7498/aps.47.1720
    [8] 赵勇, 诸葛向彬, 何业冶. 典型颗粒超导体YBa2Cu3O7/V2O5中临界电流随温度变化的特性. 物理学报, doi: 10.7498/aps.43.1693
    [9] 金新, 张贻瞳, 陆瑞熙, 姚希贤, 刘奉生, 牟慧麟, 吴晓祖, 周廉. Yba2Cu3O7-δ不可逆线与钉扎势的关联. 物理学报, doi: 10.7498/aps.41.123
    [10] 谢晓明, 陈廷国. YBa2Cu3O7-δ中正交-四方相变的级次. 物理学报, doi: 10.7498/aps.41.1830
    [11] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变. 物理学报, doi: 10.7498/aps.41.136
    [12] 余正, 丁世英, 颜家烈, 任洪涛. YBa2Cu3O7-xc轴方向临界电流的测定. 物理学报, doi: 10.7498/aps.40.634
    [13] 王楠林, 谭明秋, 赵展春, 王劲松, 沙健, 刘先明, 季明荣, 张其瑞. YBa2Cu3O7超导体中空穴状态的X射线光电子能谱研究. 物理学报, doi: 10.7498/aps.40.821
    [14] 王承章, 王怀玉, 章立源. Zn局域替代YBa2Cu3O7中的Cu引起的电子结构变化. 物理学报, doi: 10.7498/aps.40.1862
    [15] 高之爽, 侯志坚, 杜宝石, 王晨旭, 祝长宇, 李运钧, 刘福绥. YBa2Cu3O7-x高温导电性的研究. 物理学报, doi: 10.7498/aps.39.138
    [16] 阮耀钟, 胡学龙, 李立平, 孟光耀, 胡俊宝, 蒋志红, 张裕恒. 四方和正交YBa2Cu3O7-x体系的输运性质. 物理学报, doi: 10.7498/aps.38.511
    [17] 何振辉, 陈祖耀, 张酣, 张其瑞. Co,Zn元素对YBa2Cu3O7-δ的不同的掺杂效应. 物理学报, doi: 10.7498/aps.38.60
    [18] 赵勇, 张酣, 张涛, 张其瑞. 从对Cu的取代看YBa2Cu3O7-y中Cu-O平面和Cu—O链的作用. 物理学报, doi: 10.7498/aps.38.607
    [19] 徐凤枝, 杨沛然, 陈烈, 陈肖兰, 柴璋, 李碧钦. YBa2Cu3O7超导管内磁场与外磁场的关系. 物理学报, doi: 10.7498/aps.38.1016
    [20] 阮耀钟, 胡学龙, 李立平, 赵勇, 潘国强, 陈祖耀, 张其瑞. 氧缺位对单相YBa2Cu3O7-x热电势率的影响. 物理学报, doi: 10.7498/aps.37.1560
计量
  • 文章访问数:  266
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 修回日期:  2025-03-05
  • 上网日期:  2025-03-27

/

返回文章
返回