搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片磁有序和自旋逻辑器件第一原理研究

池明赫 赵磊

引用本文:
Citation:

石墨烯纳米片磁有序和自旋逻辑器件第一原理研究

池明赫, 赵磊

First-principles study of magnetic order in graphene nanoflakes as spin logic devices

Chi Ming-He, Zhao Lei
PDF
导出引用
  • 尺寸效应和拓扑阻挫能够在有限石墨烯纳米片段中形成磁有序,本文对能够产生大自旋或电子自旋反铁磁耦合的石墨烯有限片段进行合理分类,提出几种能够作为基本逻辑门的特殊结构并对其进行第一原理电子结构计算,为设计高密度超快自旋器件提供了有效方案和理论依据.计算结果证明:基于有限石墨烯片段的逻辑门结构能够在室温下进行错误率较低的可纠错运算.
    Scale effect and topological frustration can form magnetic order in the finite graphene structures (graphene nanoflakes (GNFs)). In this paper, the GNFs that can generate large net electron spin or electron spin antiferromagnetic coupling between local regions of net electron spins are classified reasonably. Representative special GNF configurations are proposed to be effectively used as fundamental logic gate devices for ultra-fast high density spintronics, and theoretically investigated by the first-principles electron structure calculations based on spin-polarized density functional theory. The first-principles calculations are performed by utilizing all-electron numerical-orbital scheme in the M11-L form of meta-GGA exchange-correlation functional. The energy spectrum of singly occupied states and the isodensity surface of total spin distribution indicate evidently that spin-single-state electrons are localized on two sides of a representative double-triangle GNF and the spin polarizations of two GNF segments are in opposite directions, resulting in antiferromagnetic coupling, which is consistent with the results derived from the graph theory and Lieb theorem. The energy of antiferromagnetic spin-coupled state is 55 meV lower than that of ferromagnetic spin-coupled state, which is obviously higher than the thermodynamic threshold of the minimum energy dissipation at room temperature. The spin coupling energy of the double triangle GNF increases with the scaling of GNF dimension increasing. The magnetic coupling strength of the double triangle GNF with and without mirror symmetry approach to the maximum stable values of 50 meV and 200 meV respectively, which are remarkably higher that of quantum dots and transition metal atom systems. Due to the fact that the spin coupling strength of the GNF logic gate spin device can reach 200 meV, it can operate normally at ambient temperature with an error rate of 0.001 which can be easily improved by an error correction technique. The calculation results demonstrate that the proposed GNF logic gate can finely operate at ambient temperature with significantly low and correctable error rate. Recent experimental studies show that graphene nanodevices on a scale of only a few nanometers can be successfully fabricated by etching technique of electron beam and scanning probe. Furthermore, the properties of GNF spin logic devices are not sensitive to intrinsic defects. The triangular GNF with n carbon rings has only (n+2)2-3 carbon atoms, while it can endure n-1 internal defects, thus persisting in non-bond states and local magnetic moments. It is suggested that the full spin logic gate devices based on GNF can be realized by using the current advanced nano-processing technology.
      通信作者: 池明赫, minghe_chi@126.com
    • 基金项目: 国家自然科学基金(批准号:51407051,51677046)资助的课题.
      Corresponding author: Chi Ming-He, minghe_chi@126.com
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant Nos. 51407051, 51677046).
    [1]

    Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T 2007 Phys. Rev. Lett. 98 187204

    [2]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408

    [3]

    Yazyev O V 2008 Phys. Rev. Lett. 101 037203

    [4]

    Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502

    [5]

    Fernández-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [6]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [7]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [8]

    Palacios J J, Fernandez-Rossier J, Brey L 2008 Phys. Rev. B 77 195428

    [9]

    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702

    [10]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [11]

    Rajca A, Wongsriratanakul J, Rajca S 2001 Science 294 1503

    [12]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [13]

    Bhowmick S, Shenoy V B 2008 J. Chem. Phys. 128 244717

    [14]

    Chappert C, Fert A, van Dau F N 2007 Nature Mater. 6 813

    [15]

    Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N D 2007 Nature 445 410

    [16]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571

    [17]

    Atulasimha J, Bandyopadhyay S 2016 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (America: Wiley) pp221-257

    [18]

    Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯 2016 物理学报 65 098501]

    [19]

    Zhang Z, Zhang Y, Zheng Z, Wang G, Su L, Zhang Y, Zhao W 2017 AIP Adv. 7 055925

    [20]

    Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 (in Chinese)[韩秀峰, 万蔡华 2018 物理学报 67 127201]

    [21]

    Xiao C J, Dong J M 2014 J. Nanjing Univ. (Nat. Sci.) 50 14 (in Chinese)[肖灿俊, 董锦明 2014 南京大学学报(自然科学) 50 14]

    [22]

    Sun J T, Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese)[孙家涛, 孟胜 2015 物理学报 64 187301]

    [23]

    Köhler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [24]

    Andzelm J, King-smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [25]

    Peverati R, Truhlar D G 2012 J. Phys. Chem. Lett. 3 117

    [26]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [27]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [28]

    Fajtlowicz S, John P E, Sach H 2005 Croat. Chem. Acta 78 195

    [29]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201

    [30]

    Brey L, Fertig H A, Das Sarma S 2007 Phys. Rev. Lett. 99 116802

    [31]

    Wimmer M, Adagideli İ, Berber S, Tománek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [32]

    Agarwal H, Pramanik S, Bandyopadhyay S 2008 New J. Phys. 10 015001

    [33]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [34]

    Tapaszto L, Dobrik G, Lambin P, Biró L P 2008 Nature Nanotech. 3 397

    [35]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill1 E W, Novoselov K S, Geim1 A K 2008 Science 320 356

    [36]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

  • [1]

    Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T 2007 Phys. Rev. Lett. 98 187204

    [2]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408

    [3]

    Yazyev O V 2008 Phys. Rev. Lett. 101 037203

    [4]

    Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502

    [5]

    Fernández-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [6]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [7]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [8]

    Palacios J J, Fernandez-Rossier J, Brey L 2008 Phys. Rev. B 77 195428

    [9]

    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702

    [10]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [11]

    Rajca A, Wongsriratanakul J, Rajca S 2001 Science 294 1503

    [12]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [13]

    Bhowmick S, Shenoy V B 2008 J. Chem. Phys. 128 244717

    [14]

    Chappert C, Fert A, van Dau F N 2007 Nature Mater. 6 813

    [15]

    Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N D 2007 Nature 445 410

    [16]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571

    [17]

    Atulasimha J, Bandyopadhyay S 2016 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (America: Wiley) pp221-257

    [18]

    Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯 2016 物理学报 65 098501]

    [19]

    Zhang Z, Zhang Y, Zheng Z, Wang G, Su L, Zhang Y, Zhao W 2017 AIP Adv. 7 055925

    [20]

    Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 (in Chinese)[韩秀峰, 万蔡华 2018 物理学报 67 127201]

    [21]

    Xiao C J, Dong J M 2014 J. Nanjing Univ. (Nat. Sci.) 50 14 (in Chinese)[肖灿俊, 董锦明 2014 南京大学学报(自然科学) 50 14]

    [22]

    Sun J T, Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese)[孙家涛, 孟胜 2015 物理学报 64 187301]

    [23]

    Köhler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [24]

    Andzelm J, King-smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [25]

    Peverati R, Truhlar D G 2012 J. Phys. Chem. Lett. 3 117

    [26]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [27]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [28]

    Fajtlowicz S, John P E, Sach H 2005 Croat. Chem. Acta 78 195

    [29]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201

    [30]

    Brey L, Fertig H A, Das Sarma S 2007 Phys. Rev. Lett. 99 116802

    [31]

    Wimmer M, Adagideli İ, Berber S, Tománek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [32]

    Agarwal H, Pramanik S, Bandyopadhyay S 2008 New J. Phys. 10 015001

    [33]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [34]

    Tapaszto L, Dobrik G, Lambin P, Biró L P 2008 Nature Nanotech. 3 397

    [35]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill1 E W, Novoselov K S, Geim1 A K 2008 Science 320 356

    [36]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

  • [1] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理:第一原理计算. 物理学报, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] 李琳, 孙宇璇, 孙伟峰. 层状氧化钼的电子结构、磁和光学性质第一原理研究. 物理学报, 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [3] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [4] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [5] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [6] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [7] 刘慧英, 张秀钦, 方艺梅, 朱梓忠. T型石墨烯及其衍生物的结构与电子特性. 物理学报, 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [8] 高潭华. 表面氢化双层硅烯的结构和电子性质. 物理学报, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [9] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [10] 颜森林. 激光混沌并联同步及其在全光逻辑门中的应用研究. 物理学报, 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [11] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响. 物理学报, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [12] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质. 物理学报, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [13] 李荣, 罗小玲, 梁国明, 付文升. 稀土元素掺杂对VH2解氢性能的影响. 物理学报, 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [14] 王如志, 徐利春, 严辉, 香山正宪. 含扭转晶界位错Al金属拉伸强度第一性原理预测. 物理学报, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [15] 颜森林. 激光混沌耦合反馈光电及全光逻辑门研究. 物理学报, 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [16] 宋海峰, 刘海风. 金属铍热力学性质的理论研究. 物理学报, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [17] 王松有, 段国玉, 邱建红, 贾 瑜, 陈良尧. 闪锌矿结构的PtN:一种不稳定的过渡金属氮化物. 物理学报, 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [18] 孟 醒, 徐晓光, 刘 伟, 孙 源, 陈 岗. 钙钛矿型HoNiO3中电荷歧化的第一原理研究. 物理学报, 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [19] 陈丽娟, 侯柱锋, 朱梓忠, 杨 勇. LiAl中空位形成能的第一原理计算. 物理学报, 2003, 52(9): 2229-2234. doi: 10.7498/aps.52.2229
    [20] 刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨 勇. InSb的锂嵌入形成能第一原理计算. 物理学报, 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
计量
  • 文章访问数:  6506
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-05
  • 修回日期:  2018-09-09
  • 刊出日期:  2018-11-05

/

返回文章
返回