搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米网电导特性的能带机理:第一原理计算

徐贤达 赵磊 孙伟峰

引用本文:
Citation:

石墨烯纳米网电导特性的能带机理:第一原理计算

徐贤达, 赵磊, 孙伟峰

First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes

Xu Xian-Da, Zhao Lei, Sun Wei-Feng
PDF
HTML
导出引用
  • 通过第一原理电子结构计算来研究有序多孔纳米网的电导特性变化的能带机理. 能带结构分析结果表明: 石墨烯纳米网超晶格(3m, 3n)(mn为整数)的电子本征态在布里渊区中心点发生四重简并; 碳空位孔洞规则排列形成的石墨烯纳米网具有由简并态分裂形成的宽度可调带隙, 无论石墨烯的两个子晶格是否对等. 在具有磁性网孔阵列的石墨烯纳米网中, 反铁磁耦合使对称子晶格的反演对称性增加了一项量子限制条件, 导致能带结构在 K 点的二重简并态分裂成带隙. 通过控制网孔密度能够有效调节石墨烯纳米网的带隙宽度, 为实现新一代石墨烯纳米电子器件提供了理论依据.
    By means of first-principles electronic structure calculations, the ordered graphene nanomeshes with patterned hexagonal vacancy holes are theoretically studied to explore the modification mechanism of electrical conduction on graphene atomic monolayers. According to pseudopotential plane wave first-principles scheme based on density functional theory, the band structures of graphene nanomeshes are calculated to analyze the electrical conductance in correlation with the superlattice symmetry and vacancy hole magnetism. Based on the structural features and topological magnetism of Y-shaped nodes between the nanopores on the atomic monolayer of graphene, the graphene nanomeshes are classified into three types. The quadruplet degeneracy and splitting of electronic states at Brillouin zone center are investigated by comparing the band structures of graphene nanomeshes and analogical superlattices. The effects of inversion symmetry and supercell size on the opening band-gap at Dirac cone are elaborately analyzed with the consideration of antiferromagnetic coupling and hydrogen passivation at the magnetic edge of nanopores on graphene nanomeshes. The band-structure calculation results indicate that the (3m, 3n) (m and n are integers) superlattices have fourfold degenerate electronic states at center point of Brillouin zone, which can be effectively splitted by regularly arranging porous atomic vacancy to make the (3m, 3n) nanomesh, resulting in adjustable band-gap no matter whether or not the sublattices keeping in equivalence. In the nanomeshes formed by patterned holes with magnetic edge, the antiferromagnetic coupling adds a quantum parameter to the inversion symmetry so as to break the sublattice equivalence, opening band-gap at the twofold degenerate K point. Nevertheless, the hydrogen passivation at the edge of magnetic nanopores will convert the magnetic graphene nanomeshes into non-magnetic and eliminate the band-gap at K point. The band-gap of graphene nanomeshes could also be controlled by changing the density of nanopores, suggesting a graphene nanomaterial with adjustable band-gap that can be designed by controlling the mesh pore spacing. The graphene nanomeshes represent a new mechanism of forming band-gap and thus promise a strategy for achieving special electrical properties of graphene nanostructures. These results also theoretically demonstrate that the nano-graphene is a prospective candidate with flexibly adjustable electrical properties for realizing multivariate applications in new-generation nano-electronics.
      通信作者: 孙伟峰, sunweifeng@hrbust.edu.cn
    • 基金项目: 国家级-国家自然科学基金项目(51337002)
      Corresponding author: Sun Wei-Feng, sunweifeng@hrbust.edu.cn
    [1]

    Pakhira S, Mendoza-Cortes J L 2018 J. Phys. Chem. C 122 4768

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z 2009 J. Am. Chem. Soc. 131 17728Google Scholar

    [4]

    Zhang J, Li V, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Yan S S 2017 J. Mater. Chem. C 5 8847

    [5]

    Dong Y F, Liu P G, Yin W Y, Li G S, Yi B 2015 Physica E 70 176Google Scholar

    [6]

    Zhou J, Liang Q F, Dong J M 2010 Carbon 48 1405Google Scholar

    [7]

    Tang G, Zhang Z, Deng X, Fan Z, Zeng Y, Zhou J 2014 Carbon 76 348Google Scholar

    [8]

    Wang S F, Chen L Y, Zhang J M 2017 Superlattice. Microst. 104 341Google Scholar

    [9]

    Eldeeb M S, Fadlallah M M, Martyna G J, Maarouf A A 2018 Carbon 133 369Google Scholar

    [10]

    Jangid P, Pathan D, Kottantharayil A 2018 Carbon 132 65Google Scholar

    [11]

    Pardini L, Löffler S, Biddau G, Hambach R, Kaiser U, Draxl C, Schattschneider P 2016 Phys. Rev. Lett. 117 036801Google Scholar

    [12]

    Ouyang F, Yang Z, Peng S, Zheng X, Xiong X 2014 Physica E 56 222Google Scholar

    [13]

    Sheu S Y, Yang D Y 2014 Carbon 71 76Google Scholar

    [14]

    Shohany B G, Roknabadi M R, Kompany A 2018 Comp. Mater. Sci. 144 280Google Scholar

    [15]

    Wang T H, Zhu Y F, Jiang Q 2014 Carbon 77 431Google Scholar

    [16]

    Yang C K 2010 Carbon 48 3901Google Scholar

    [17]

    Takahashi T, Sugawara K, Noguchi E, Sato T, Takahashi T 2014 Carbon 73 141Google Scholar

    [18]

    Lu Y H, Chen W, Feng Y P 2009 J. Phys. Chem. B 113 2

    [19]

    Kheirabadi N, Shafiekhani A 2013 Physica E 47 309Google Scholar

    [20]

    Ajeel F N, Mohammed M H, Khudhair A M 2019 Physica E 105 105Google Scholar

    [21]

    Mohammed M H 2018 Physica E 95 86Google Scholar

    [22]

    Xiu S L, Zheng M M, Zhao P, Zhang Y, Liu H Y, Li S J, Chen G, Kawazoe Y 2014 Carbon 79 646Google Scholar

    [23]

    Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402Google Scholar

    [24]

    Liu L Z, Tian S B, Long Y Z, Li W X, Yang H F, Li J J, Gu C Z 2014 Vacuum 105 21Google Scholar

    [25]

    Şahin H, Ciraci S 2011 Phys. Rev. B 84 035452Google Scholar

    [26]

    Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454Google Scholar

    [27]

    Yang W, Lu X B, Chen G R, Wu S, Xie G B, Cheng M, Wang D M, Yang R, Shi D G, Watanabe K, Taniguchi T, Voisin C, Placais B, Zhang Y B, Zhang G Y 2016 Nano Lett. 16 2387Google Scholar

    [28]

    Molina-Valdovinos S, Martinez-Riveraa J, Moreno-Cabreraa N E, Rodriguez-Vargas I 2018 Physica E 101 188Google Scholar

    [29]

    Kress G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [31]

    Kress G, Joubert D 1999 Phys. Rev. B 59 1758

    [32]

    Pfrommer B G, Co te, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

  • 图 1  (a) 网孔周期性有序排列的石墨烯纳米网示意图; (b) 不同磁分布的三种类型石墨烯纳米网的空孔超晶格胞结构(左)和Y形结点连接部分(右), 黑色小球表示G42 (MA) 和G84 (MC) 网孔边缘上具有净自旋磁矩分布的碳原子

    Fig. 1.  (a) Schematic structure of graphene nanomesh with periodically patterned holes; (b) the supperlattice cells (left) and Y-junction connection areas (right) for three types of vacant holes with different magnetic distributions, black beads represent carbon atoms distributed with net spin moment at the edge of G42 (MA) and G84 (MC) holes in graphene nanomeshes.

    图 2  G60石墨烯纳米网的电子结构计算结果 (a)超晶格(N, N)胞尺寸N = 10 – 15的G60纳米网能带结构; (b) N = 12的G60纳米网在布里渊区K点σ*态的电子密度空间分布(电子态能量~0.2 eV); (c) N = 12网孔边缘碳原子的投影能态密度. 费米能级为参考能量零点(竖直虚线)

    Fig. 2.  Calculated electronic structures of G60 patterned graphene nanomeshes: (a) Energy band structures of the G60 nanomeshes with supplattice cell (N, N) (N = 10 – 15); (b) the electron density distribution of the σ* state at K point in the energy ~0.2 eV for N = 12; (c) the projected density of states on the carbon atoms of hole edge for N = 12. The reference energy zero is set as Fermi energy level indicated with horizontal dot line.

    图 3  石墨烯超晶格的能带结构, 超胞尺寸从(1, 1)至(7, 7), 以费米能级(垂直虚线)作为能量参考零点

    Fig. 3.  The energy band structures of pristine graphene supperlattices with lattice vector extending from (1, 1) to (7, 7). Fermi energy level is referenced as energy zero indicated by horizontal dot line.

    图 4  G60 (N, N)石墨烯纳米网的网孔边缘碳-碳原子间距d (a)以及σ*态的K点能级(b)随超晶格胞尺寸N的变化, 费米能级作为参考能量零点

    Fig. 4.  Carbon-carbon atomic distance d at hole edge (a) and energy level of the σ* state at K point (b) as a function of supperlattice cell size N for the G60 (N, N) graphene nanomeshes, with Fermi energy level referenced as energy zero.

    图 5  (a) MA (G42)和(b) MC (G84)型网孔石墨烯纳米网的能带结构, 上下两行能带结构图分别对应网孔边缘碳原子无氢钝化和氢钝化的石墨烯纳米网

    Fig. 5.  Energy band structures of the graphene nanomeshes with (a) MA (G42) and (b) MC (G84) patterned holes, respectively. The up and down panels represent nanomeshes without and with hydrogen passivation at hole edge, respectively.

    图 6  (a) NM 网孔G60, (b) MA网孔G42和(c) MC网孔G84石墨烯纳米网的能带带隙随超晶格胞尺寸(N, N)的变化

    Fig. 6.  Bandgap width varying with cell size (N, N) of (a) G60, (b) G42 and (c) G84 graphene nanomeshes with NM, MC and MA vacancy holes respectively.

  • [1]

    Pakhira S, Mendoza-Cortes J L 2018 J. Phys. Chem. C 122 4768

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z 2009 J. Am. Chem. Soc. 131 17728Google Scholar

    [4]

    Zhang J, Li V, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Yan S S 2017 J. Mater. Chem. C 5 8847

    [5]

    Dong Y F, Liu P G, Yin W Y, Li G S, Yi B 2015 Physica E 70 176Google Scholar

    [6]

    Zhou J, Liang Q F, Dong J M 2010 Carbon 48 1405Google Scholar

    [7]

    Tang G, Zhang Z, Deng X, Fan Z, Zeng Y, Zhou J 2014 Carbon 76 348Google Scholar

    [8]

    Wang S F, Chen L Y, Zhang J M 2017 Superlattice. Microst. 104 341Google Scholar

    [9]

    Eldeeb M S, Fadlallah M M, Martyna G J, Maarouf A A 2018 Carbon 133 369Google Scholar

    [10]

    Jangid P, Pathan D, Kottantharayil A 2018 Carbon 132 65Google Scholar

    [11]

    Pardini L, Löffler S, Biddau G, Hambach R, Kaiser U, Draxl C, Schattschneider P 2016 Phys. Rev. Lett. 117 036801Google Scholar

    [12]

    Ouyang F, Yang Z, Peng S, Zheng X, Xiong X 2014 Physica E 56 222Google Scholar

    [13]

    Sheu S Y, Yang D Y 2014 Carbon 71 76Google Scholar

    [14]

    Shohany B G, Roknabadi M R, Kompany A 2018 Comp. Mater. Sci. 144 280Google Scholar

    [15]

    Wang T H, Zhu Y F, Jiang Q 2014 Carbon 77 431Google Scholar

    [16]

    Yang C K 2010 Carbon 48 3901Google Scholar

    [17]

    Takahashi T, Sugawara K, Noguchi E, Sato T, Takahashi T 2014 Carbon 73 141Google Scholar

    [18]

    Lu Y H, Chen W, Feng Y P 2009 J. Phys. Chem. B 113 2

    [19]

    Kheirabadi N, Shafiekhani A 2013 Physica E 47 309Google Scholar

    [20]

    Ajeel F N, Mohammed M H, Khudhair A M 2019 Physica E 105 105Google Scholar

    [21]

    Mohammed M H 2018 Physica E 95 86Google Scholar

    [22]

    Xiu S L, Zheng M M, Zhao P, Zhang Y, Liu H Y, Li S J, Chen G, Kawazoe Y 2014 Carbon 79 646Google Scholar

    [23]

    Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402Google Scholar

    [24]

    Liu L Z, Tian S B, Long Y Z, Li W X, Yang H F, Li J J, Gu C Z 2014 Vacuum 105 21Google Scholar

    [25]

    Şahin H, Ciraci S 2011 Phys. Rev. B 84 035452Google Scholar

    [26]

    Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454Google Scholar

    [27]

    Yang W, Lu X B, Chen G R, Wu S, Xie G B, Cheng M, Wang D M, Yang R, Shi D G, Watanabe K, Taniguchi T, Voisin C, Placais B, Zhang Y B, Zhang G Y 2016 Nano Lett. 16 2387Google Scholar

    [28]

    Molina-Valdovinos S, Martinez-Riveraa J, Moreno-Cabreraa N E, Rodriguez-Vargas I 2018 Physica E 101 188Google Scholar

    [29]

    Kress G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [31]

    Kress G, Joubert D 1999 Phys. Rev. B 59 1758

    [32]

    Pfrommer B G, Co te, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

  • [1] 申开波, 刘英光, 李鑫, 李亨宣. 石墨烯纳米网中的声子干涉效应. 物理学报, 2023, 72(12): 123102. doi: 10.7498/aps.72.20230361
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [5] 李琳, 孙宇璇, 孙伟峰. 层状氧化钼的电子结构、磁和光学性质第一原理研究. 物理学报, 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [6] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究. 物理学报, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [7] 刘慧英, 张秀钦, 方艺梅, 朱梓忠. T型石墨烯及其衍生物的结构与电子特性. 物理学报, 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [8] 高潭华. 表面氢化双层硅烯的结构和电子性质. 物理学报, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [9] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [10] 李盛涛, 李国倡, 闵道敏, 赵妮. 入射电子能量对低密度聚乙烯深层充电特性的影响. 物理学报, 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [11] 李荣, 罗小玲, 梁国明, 付文升. 稀土元素掺杂对VH2解氢性能的影响. 物理学报, 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [12] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质. 物理学报, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [13] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 王松有, 段国玉, 邱建红, 贾 瑜, 陈良尧. 闪锌矿结构的PtN:一种不稳定的过渡金属氮化物. 物理学报, 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [19] 孟 醒, 徐晓光, 刘 伟, 孙 源, 陈 岗. 钙钛矿型HoNiO3中电荷歧化的第一原理研究. 物理学报, 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [20] 刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨 勇. InSb的锂嵌入形成能第一原理计算. 物理学报, 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
计量
  • 文章访问数:  9559
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-03
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-02-20

/

返回文章
返回