-
采用基于密度泛函理论的第一原理方法研究了T型石墨烯及其衍生物-n(n=1–5)的结构稳定性和电子结构性质.T型石墨烯是一种拥有四角形环的二维碳材料同素异构体,通过改变连接四角形环的碳链上的碳原子个数n,可以得到一系列的sp-sp2杂化结构,称其为T型石墨烯衍生物-n.计算结果表明:这些材料的结构稳定性、化学键类型和电子结构性质都依存于n的奇偶性.其中T型石墨烯(n=0)的结构最稳定,并形成一个由8个碳原子构成的大环.声子谱计算的结果表明,n为偶数时的体系具有动力学稳定性,而n为奇数时的体系则是不稳定的.n为偶数时体系四角形环之间的碳链上的化学键呈单、三键交叉排列,体系显示为金属性特征,且随着n的增大,体系的金属性加强.n为奇数时体系四角形环之间的碳链上的化学键则为双键连续排列,体系呈金属性且具有磁性(n=1除外).研究表明该系列材料作为一种新的二维碳材料同素异构体,具有独特的结构和丰富的电子结构特性,很可能在纳米器件中得到广泛应用.
-
关键词:
- T型石墨烯 /
- T型石墨烯衍生物-n /
- 电子结构 /
- 第一原理计算
Recent years there has been aroused a growing interest in designing two-dimensional (2D) structures of carbon allotropes, owing to the great success in graphene. The T-graphene is a newly proposed 2D carbon allotrope possessing tetragonal symmetry other than hexagonal symmetry of graphene. Also, the energetic and dynamical stabilities of T-graphene have been revealed. So motivated, we investigate the structural stabilities and electronic properties of T-graphene and especially its derivatives-n(n=1-5) by using the first-principle calculation based on the density function theory. By changing the atomic number (n) of the linear carbon chains connecting the two tetragon rings of T-graphene, a series of sp-sp2 hybrid structures can be formed, which is named T-graphene derivatives-n. The calculation results show that the structural stabilities, chemical bond types and electronic structures of these materials depend greatly on the parity of n. Owing to a strong π-bond formed by eight carbon atoms in T-graphene, it becomes the one with the lowest energy in all these materials studied in this work. An interesting phenomenon is found that the T-graphene derivatives-n with even n are dynamically stable as witnessed by the calculated phonon spectra without imaginary modes, while those with odd n are dynamically unstable. The metallic behaviors are present in the T-graphene derivatives-n with even carbon atoms in the linear carbon chains, showing an alternating single and triple C–C bonds. Besides, we observe that the metallicity of the T-graphene derivatives-n with even n becomes stronger as n increases. On the other hand, the linear carbon chains with odd carbon atoms are comprised of continuous C=C double bonds. These T-graphene derivatives-n with odd n also show metallic behaviors, but turn into magnetic materials (except for n=1), the magnetic moments are about 0.961μB (n=3) and 0.863μB (n=5) respectively, and ferromagnetic ordering is the only possibility for the magnetism, which rarely occurs in carbon material. Our first-principle studies indicate that the introducing carbon chains between the tetragonal carbon rings of T-graphene constitute an efficient method to obtain new two-dimensional carbon allotrope. With different numbers (even or odd) of carbon atoms on the chains, the constructed 2D carbon allotropes could show contrasting dynamical and magnetic properties. These findings provide a theoretical basis for designing two-dimensional carbon materials and carbon-based nanoelectronic devices.-
Keywords:
- T-graphene /
- T-graphene derivatives-n /
- electronic structure /
- first-principle calculation
[1] Kroto H W, Heath J R, O'brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[5] Pendry J B 2007 Science 315 1226
[6] Popinciuc M, Józsa C, Zomer P J, Tombros N, Veligura A, Jonkman H T, van Wees B J 2009 Phys. Rev. B 80 214427
[7] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213
[8] Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436
[9] Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403
[10] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687
[11] Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K 2005 Chem. Phys. 312 289
[12] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
[13] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
[14] Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081
[15] Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969
[16] Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213
[17] Haley M M 2008 Pure Appl. Chem. 80 519
[18] Chi B Q, Liu Y, Xu J C, Qin X M, Sun C, Bai C H, Liu Y F, Zhao X L, Li X W 2016 Acta Phys. Sin. 13 133101 (in Chinese)[迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武2016物理学报13 133101]
[19] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256
[20] Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879
[21] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J, Liu F 2015 J. Phys. Chem. Lett. 6 2959
[22] Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505
[23] Ye X J, Liu C S, Zhong W, Zeng Z, Du Y W 2014 J. Appl. Phys. 116 114304
[24] Majidi R 2015 Physica E 74 371
[25] Liu C S, Jia R, Ye X J, Zeng Z 2013 J. Chem. Phys. 139 034704
[26] Dai C J, Yan X H, Xiao Y, Guo Y D 2014 Europhys. Lett. 107 37004
[27] Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R, Su G 2012 J. Appl. Phys. 112 074315
[28] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[29] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[30] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[31] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[33] Feynman R P 1939 Phys. Rev. 56 340
[34] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
-
[1] Kroto H W, Heath J R, O'brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[5] Pendry J B 2007 Science 315 1226
[6] Popinciuc M, Józsa C, Zomer P J, Tombros N, Veligura A, Jonkman H T, van Wees B J 2009 Phys. Rev. B 80 214427
[7] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213
[8] Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436
[9] Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403
[10] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687
[11] Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K 2005 Chem. Phys. 312 289
[12] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
[13] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
[14] Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081
[15] Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969
[16] Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213
[17] Haley M M 2008 Pure Appl. Chem. 80 519
[18] Chi B Q, Liu Y, Xu J C, Qin X M, Sun C, Bai C H, Liu Y F, Zhao X L, Li X W 2016 Acta Phys. Sin. 13 133101 (in Chinese)[迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武2016物理学报13 133101]
[19] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256
[20] Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879
[21] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J, Liu F 2015 J. Phys. Chem. Lett. 6 2959
[22] Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505
[23] Ye X J, Liu C S, Zhong W, Zeng Z, Du Y W 2014 J. Appl. Phys. 116 114304
[24] Majidi R 2015 Physica E 74 371
[25] Liu C S, Jia R, Ye X J, Zeng Z 2013 J. Chem. Phys. 139 034704
[26] Dai C J, Yan X H, Xiao Y, Guo Y D 2014 Europhys. Lett. 107 37004
[27] Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R, Su G 2012 J. Appl. Phys. 112 074315
[28] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[29] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[30] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[31] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[33] Feynman R P 1939 Phys. Rev. 56 340
[34] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
计量
- 文章访问数: 7283
- PDF下载量: 314
- 被引次数: 0