搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土元素掺杂对VH2解氢性能的影响

李荣 罗小玲 梁国明 付文升

引用本文:
Citation:

稀土元素掺杂对VH2解氢性能的影响

李荣, 罗小玲, 梁国明, 付文升

Influence of doped rare earth elements on the dehydrogenation properties of VH2

Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng
PDF
导出引用
  • 采用密度泛函理论(DFT)的第一性原理的平面波超软赝势方法,研究了La, Ce和Pr掺杂对VH2的电子结构和解氢性能的影响.计算结果显示La, Ce和Pr掺杂VH2后晶体模型的费米能级Ef处 电子浓度N (Ef)的增加,表明体系结构稳定性减弱,解氢能力增强; 电子密度计算也显示V-H之间相互作用减弱,解氢能力增强;同时Mulliken布居数计算结果还显示掺杂以后 解氢能力增强与V-d轨道Mulliken布居数减少, V-s轨道Mulliken布居数增加有关.
    In this paper, using the plane waves ultrasoft pseudopotential method which is base on the first principles of DFT, we study the effects of C, Si, Ge, Sn and Pb alloying on the electronic structure and dehydrogenation properties of VH2. The calculated results show that the electron density of Ef fermi level is higher than that of pure VH2 alloy, exhibiting that the structural stability becomes weakened thus the hydrogen desorption property of VH2 can be improved. Moreover, the computed results of electron density of V-H bond also demonstrate that the interaction between V and H atoms decreases, also showing that the hydrogen desorption property of VH2 is improved. At the same time, it is found from the calculated results that the Mulliken population of V-s orbital increases whereas that of V-d orbital decreases, which is related to the enhanced dehydrogenation property alloyed by La, Ce and Pr.
    • 基金项目: 国家自然科学基金(批准号: 20971132),重庆市自然科学基金(批准号: CSTC2009BB4243) 和重庆市教委科技项目(批准号: KJ090810, KJ070809)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 20971132), the Natural Science Foundation of Chongqing, china(Grant No. CSTC2009BB4243), and the Science and Technology Research Program of the Education Committee of Chongqing, China (Grant No. KJ090810).
    [1]

    Young K, Fetcenko M A, Li F 2009 J. Alloys Comp. 468 482

    [2]

    Singh B K, Cho S W, Yoon H S 2008 Mate. Chem. Phys. 112 686

    [3]

    Pan H G, Li R, Liu Y F 2008 J.Alloys Comp. 463 189

    [4]

    Zhu Y F, Liu Y F, Hua F 2008 J. Alloys Comp. 463 528

    [5]

    Zhou J J, Chen Y G, Wu C L, Pang L J, Zhen X, Gao T 2009 Acta Phys. Sin. 58 7044 (in Chinese) [周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛 2009 物理学报 58 7044]

    [6]

    Elanski D, Lim J W, Mimura K 2006 J. Alloys Comp. 421 203

    [7]

    Li S C, Zhao M S, Wang L M 2008 Mate. Sci. Eng. B 150 168

    [8]

    Basak S, Shashikala K, Sengupta P 2007 Int. J. Hydrogen Energy 32 4973

    [9]

    Sung W C, Jeong H Y, Gun S 2008 Int. J. Hydrogen Energy 33 1700

    [10]

    Jeong H Y, Gun S, Sung W C 2007 Int. J. Hydrogen Energy 32 2977

    [11]

    Liu Y, Zhao M S, Li S C, Wang Y Z, Ma L, Song J 2008 J. Chinese Rare Earth Soc. 26 188 (in Chinese) [刘妍, 赵敏寿, 李书存, 王艳芝, 马琳, 宋杰 2008 中国稀土学报 26 188]

    [12]

    Li J, Zhao M S, Hou C P, Huang L, Zhu X J, Cao G Y 2007 Rare Metals 31 772 (in Chinese) [李佳, 赵敏寿, 侯春平, 黄亮, 朱新坚, 曹广益 2007 稀有金属 31 772]

    [13]

    Luo Y C, Zhang T J, Wang D, Kang L 2010 Acta Phys.-Chim. Sin 26 2397 (in Chinese) [罗永春, 张铁军, 王铎, 康龙 2010 物理化学学报 26 2397]

    [14]

    Li R, Luo X L, Liang G M, Fu W S 2011 Science China B 41 1506 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 中国科学B辑 41 1506]

    [15]

    Li R, Luo X L, Liang G M, Fu W S 2011 Acta Phys. Sin. 60 117105 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105]

    [16]

    Li R, Zhou S Q, Chen C G, Liu S P 2005 Acta Phys.-Chim. Sin. 21 716

    [17]

    Matumura T, Yukawa H, Morinaga M 1999 J. Alloys Comp. 284 82

    [18]

    Segall M D, Lindan P L, Probert M J 2002 J. Phys-Condens Mat. 14 2717

    [19]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [20]

    Zhang H, Qi K Z, Zahng G Y 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英 2009 物理学报 58 8077]

    [21]

    Zhao Z Y, Liu Q J, Zhang J 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾 2007 物理学报 56 6592]

  • [1]

    Young K, Fetcenko M A, Li F 2009 J. Alloys Comp. 468 482

    [2]

    Singh B K, Cho S W, Yoon H S 2008 Mate. Chem. Phys. 112 686

    [3]

    Pan H G, Li R, Liu Y F 2008 J.Alloys Comp. 463 189

    [4]

    Zhu Y F, Liu Y F, Hua F 2008 J. Alloys Comp. 463 528

    [5]

    Zhou J J, Chen Y G, Wu C L, Pang L J, Zhen X, Gao T 2009 Acta Phys. Sin. 58 7044 (in Chinese) [周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛 2009 物理学报 58 7044]

    [6]

    Elanski D, Lim J W, Mimura K 2006 J. Alloys Comp. 421 203

    [7]

    Li S C, Zhao M S, Wang L M 2008 Mate. Sci. Eng. B 150 168

    [8]

    Basak S, Shashikala K, Sengupta P 2007 Int. J. Hydrogen Energy 32 4973

    [9]

    Sung W C, Jeong H Y, Gun S 2008 Int. J. Hydrogen Energy 33 1700

    [10]

    Jeong H Y, Gun S, Sung W C 2007 Int. J. Hydrogen Energy 32 2977

    [11]

    Liu Y, Zhao M S, Li S C, Wang Y Z, Ma L, Song J 2008 J. Chinese Rare Earth Soc. 26 188 (in Chinese) [刘妍, 赵敏寿, 李书存, 王艳芝, 马琳, 宋杰 2008 中国稀土学报 26 188]

    [12]

    Li J, Zhao M S, Hou C P, Huang L, Zhu X J, Cao G Y 2007 Rare Metals 31 772 (in Chinese) [李佳, 赵敏寿, 侯春平, 黄亮, 朱新坚, 曹广益 2007 稀有金属 31 772]

    [13]

    Luo Y C, Zhang T J, Wang D, Kang L 2010 Acta Phys.-Chim. Sin 26 2397 (in Chinese) [罗永春, 张铁军, 王铎, 康龙 2010 物理化学学报 26 2397]

    [14]

    Li R, Luo X L, Liang G M, Fu W S 2011 Science China B 41 1506 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 中国科学B辑 41 1506]

    [15]

    Li R, Luo X L, Liang G M, Fu W S 2011 Acta Phys. Sin. 60 117105 (in Chinese) [李荣, 罗小玲, 梁国明, 付文升 2011 物理学报 60 117105]

    [16]

    Li R, Zhou S Q, Chen C G, Liu S P 2005 Acta Phys.-Chim. Sin. 21 716

    [17]

    Matumura T, Yukawa H, Morinaga M 1999 J. Alloys Comp. 284 82

    [18]

    Segall M D, Lindan P L, Probert M J 2002 J. Phys-Condens Mat. 14 2717

    [19]

    Marlo M, Milman V 2000 Phys. Rev. B 62 2899

    [20]

    Zhang H, Qi K Z, Zahng G Y 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英 2009 物理学报 58 8077]

    [21]

    Zhao Z Y, Liu Q J, Zhang J 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾 2007 物理学报 56 6592]

计量
  • 文章访问数:  3706
  • PDF下载量:  1119
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-14
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

稀土元素掺杂对VH2解氢性能的影响

  • 1. 重庆师范大学功能材料实验室, 重庆 400047
    基金项目: 

    国家自然科学基金(批准号: 20971132),重庆市自然科学基金(批准号: CSTC2009BB4243) 和重庆市教委科技项目(批准号: KJ090810, KJ070809)资助的课题.

摘要: 采用密度泛函理论(DFT)的第一性原理的平面波超软赝势方法,研究了La, Ce和Pr掺杂对VH2的电子结构和解氢性能的影响.计算结果显示La, Ce和Pr掺杂VH2后晶体模型的费米能级Ef处 电子浓度N (Ef)的增加,表明体系结构稳定性减弱,解氢能力增强; 电子密度计算也显示V-H之间相互作用减弱,解氢能力增强;同时Mulliken布居数计算结果还显示掺杂以后 解氢能力增强与V-d轨道Mulliken布居数减少, V-s轨道Mulliken布居数增加有关.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回