搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土掺杂对LiFePO4性能影响的第一性原理研究

钟淑琳 仇家豪 罗文崴 吴木生

引用本文:
Citation:

稀土掺杂对LiFePO4性能影响的第一性原理研究

钟淑琳, 仇家豪, 罗文崴, 吴木生

First-principles study of properties of rare-earth-doped LiFePO4

Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng
PDF
HTML
导出引用
  • 掺杂是提高LiFePO4体相电子电导率, 优化其电化学性能的重要方法之一. 稀土元素因具有高的电子电荷、大的离子半径以及强的自极化能力, 成为掺杂改性的重要选择. 本文利用基于密度泛函理论的第一性原理方法研究了稀土元素 (La, Ce, Pr) 掺杂的锂离子电池正极材料LiFePO4的性质. 计算结果表明, 稀土元素掺杂均不同程度地增加了LiFePO4的晶格常数和晶胞体积. 在脱锂过程中, 稀土掺杂后材料体积变化率明显减小, 材料的循环性能提升, 但电池能量密度下降. 稀土掺杂使LiFePO4由原来的半导体特性转变为金属特性, 增加了材料的电子电导率. 力学特性的计算表明稀土显著增加了LiFePO4材料的延展性. 另外, La和Ce掺杂后的LiFePO4在Li离子迁移过程中表现出复杂的能垒变化, 在远离稀土离子处迁移势垒呈现出不同程度的减小, 而在靠近稀土离子处迁移势垒起伏较大. 与Ce掺杂相比, La掺杂造成的离子迁移势垒的变化程度更大, 表明稀土离子掺杂对体系局域结构产生较大的影响.
    Doping is one of the most important methods to improve the electronic conductivity and modify its electrochemical performance of LiFePO4. Rare earth elements have become an effective selection for doping modification due to their high electronic charges, large ion radii and strong self-polarization ability. In this work, we study the structural, electronic and ionic diffusion properties of LiFePO4 with rare earth (RE) doping (La, Ce, Pr) by using first-principles calculation based on density functional theory. The calculated results show that the lattice constant and cell volume of LiFePO4 increase to a different degree after RE doping. In the delithiation process, the volume change rate of the material after RE doping is significantly reduced, indicating the cycle performance of the material is improved, on the other hand, the energy density is reduced. The calculated density of states suggests that RE-doped LiFePO4 exhibits metallic characteristics, which is different from the undoped one with semiconductor characteristics. As a result, the RE-doping can increase the electronic conductivity of the material. The calculation of elastic modulus demonstrates the increase of ductility for RE-doped LiFePO4, and it can be predicted that the cycle performance and the rate performance of the RE-doped battery have great improvement. In addition, La and Ce doped LiFePO4 materials exhibit that the complex energy barrier can change during the Li ion migration, and the migration barriers vary considerably, depending on different paths, which is related to the variation of potential energy surface caused by the doping of rare-earth elements. The Li-ions are far from the RE ions, the migration barriers are obviously lower than the undoped one, while the Li-ions are closest to RE ions, the migration barriers increase essentially. Compared with Ce doping, the change of the Li-ion migration barrier caused by La doping is great, indicating that RE ion doping has a greater influence on the local structure of the system.
      通信作者: 吴木生, smwu@jxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064014, 12064015)、江西省自然科学基金(批准号: 20192BAB202004)和中国福建能源器件科学技术创新实验室开放基金(批准号: 21C-OP-202005)资助的课题
      Corresponding author: Wu Mu-Sheng, smwu@jxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064014, 12064015), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BAB202004), and the Open fund of Fujian Provincial Innovation Laboratory of Energy Devices, China (Grant No. 21C-OP-202005)
    [1]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [2]

    Padhi A K, Nanjundawamy K S, Goodenough J B 1997 J. Electrochem. Soc. 144 1188Google Scholar

    [3]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419Google Scholar

    [4]

    Yamada A, Chung S C 2001 J. Electrochem. Soc. 148 A960Google Scholar

    [5]

    Takahashi M, Tobishima S I, Takei K, Sakurai Y 2002 Solid State Ionics 148 283Google Scholar

    [6]

    Yamada A, Chung S C, Hinokuma K 2001 J. Electrochem. Soc. 148 A224Google Scholar

    [7]

    Huang H, Yin S C, Nazar L F 2001 Electrochem. Solid-State Lett. 4 A170Google Scholar

    [8]

    Chung S Y, Bloking J T, Chiang Y M 2002 Nat. Mater. 1 123Google Scholar

    [9]

    Chung S Y, Chiang Y M 2003 Electrochem. Solid-State Lett. 6 A278Google Scholar

    [10]

    Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q, Huang X J 2003 Phys. Rev. B 68 195108Google Scholar

    [11]

    Wang Z, Sun S, Xia D, Chu W, Zhang S, Wu Z 2008 J. Phys. Chem. C 112 17450Google Scholar

    [12]

    Thackeray M 2002 Nat. Mater. 1 81Google Scholar

    [13]

    Jiang B Q, Hu S F, Wang M W, Ouyang X P, Gong Z Y 2011 Rare Metals 30 115Google Scholar

    [14]

    Ghosh P, Mahanty S, Basu R N 2009 Electrochim. Acta 54 1654Google Scholar

    [15]

    Sun H B, Chen Y G, Xu C H, Zhu D, Huang L H 2012 J. Solid State Electrochem. 16 1247Google Scholar

    [16]

    Ding Y H, Zhang P, Jiang Y, Gao D H 2007 Solid State Ionics 178 967Google Scholar

    [17]

    郑路敏, 钟淑英, 徐波, 欧阳楚英 2019 物理学报 68 138201Google Scholar

    Zheng L M, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 138201Google Scholar

    [18]

    Tian Y W, Kang X X, Liu L Y, Xu C Q, Qu T 2008 J. Rare Earths 26 279Google Scholar

    [19]

    Luo S H, Tian Y, Li H, Shi K J, Tang Z L, Zhang Z T 2010 J. Rare Earths 28 439Google Scholar

    [20]

    Needham S A, Wang G X, Liu H K, Drozd V A, Liu R S 2007 J. Power Sources 174 828Google Scholar

    [21]

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R 2016 Chin. Phys. B 25 018212Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [25]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [26]

    Zhou F, Kang K, Maxisch T, Ceder G, Morgan D 2004 Solid State Commun. 132 181Google Scholar

    [27]

    Li B, Metiu H 2010 J. Phys. Chem. C 114 12234Google Scholar

    [28]

    Shi S, Tang Y, Ouyang C, Cui L, Xin X, Li P, Zhou W, Zhang H., Lei M, Chen L 2010 J. Phys. Chem. Solids 71 788Google Scholar

    [29]

    Ning F H, Xu B, Shi J, Wu M S, Hu Y Q, Ouyang C Y 2016 J. Phys. Chem. C 120 18428Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [32]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [33]

    Streltsov V A, Belokoneva E L, Tsirelson V G, Hansen N K 1993 Acta Crystallogr., Sect. B 49 147Google Scholar

    [34]

    Xie Y, Yu H T, Yi T F, Zhu Y R 2014 ACS Appl. Mater. Interfaces 6 4033Google Scholar

    [35]

    Andersson A S, Kalska B, Hggstrm L, Thomas J O 2000 Solid State Ionics 130 41Google Scholar

    [36]

    Wang Y, Wang Y, Hosono, E, Wang K Zhou H 2008 Angew. Chem. 47 7461Google Scholar

    [37]

    张华, 唐元昊, 周薇薇, 李沛娟, 施思齐 2010 物理学报 59 5135Google Scholar

    Zhang H, Tang Y H, Zhou W W, Li P J, Shi S Q 2010 Acta Phys. Sin. 59 5135Google Scholar

    [38]

    Maxisch T, Ceder G 2006 Phys. Rev. B 73 174112Google Scholar

    [39]

    Wu Z, Hao X, Liu X, Meng J 2007 Phys. Rev. B 75 054115Google Scholar

    [40]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [41]

    Caravaca M A, Mino J C, Perez V J, Casali R A, Ponce C A 2009 J. Phys. Condens. Matter 21 015501Google Scholar

    [42]

    Pugh S F 2009 Philos. Mag. 45 823Google Scholar

    [43]

    Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M, Shi S Q 2020 Chin. Phys. B 29 068202Google Scholar

    [44]

    Morgan D, Van der Ven A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30Google Scholar

    [45]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303Google Scholar

  • 图 1  (a) LiFePO4和(b) FePO4中稀土掺杂位置示意图

    Fig. 1.  Crystal structure of (a) LiFePO4 and (b) FePO4 with rare-earth doping sites.

    图 2  LiFePO4 (a)完全脱锂后的体积变化率与(b)平均脱锂电位

    Fig. 2.  (a) Volume variations and (b) intercalation potentials of LiFePO4.

    图 3  LiFePO4的电子态密度图 (a)未掺杂; (b) La掺杂; (c) Ce掺杂; (d) Pr掺杂

    Fig. 3.  Density of states of LiFePO4: (a) Without doping; (b) La doping; (c) Ce doping; (d) Pr doping.

    图 4  稀土元素(La, Ce)掺杂后的LiFePO4中不同的Li离子迁移路径

    Fig. 4.  Different Li ion migration paths of LiFePO4 with rare-earth (La, Ce) doping.

    图 5  未稀土掺杂的LiFePO4中Li离子迁移的能量分布

    Fig. 5.  Energy profile of the Li ion migration in LiFePO4 without rare-earth doping.

    图 6  Li离子在La和Ce掺杂LiFePO4中的迁移路径和势垒 (a) La掺杂; (b) Ce掺杂

    Fig. 6.  Diffusion paths and energy barriers of Li ions in La- and Ce-doped LiFePO4: (a) La-doped;(b) Ce-doped.

    表 1  未掺杂与稀土掺杂的LiFePO4的晶格常数和超胞体积

    Table 1.  Optimized lattice contests and cell volume of LiFePO4 without doping and with rare-earth doping.

    体系a2bcV3
    LiFePO4(本工作)10.42212.1374.753601.42
    LiFePO4 (Exp.)[33]10.33212.0224.692616.34
    LiFePO4 (Cal.)[10]10.48711.8304.748589.04
    LiFe0.875La0.125PO410.59412.3994.796630.05
    LiFe0.875Ce0.125PO410.58512.3704.789627.11
    LiFe0.875Pr0.125PO410.58112.3624.786626.03
    下载: 导出CSV

    表 2  未掺杂LiFePO4中的Fe—O键长和稀土掺杂结构中RE—O键长

    Table 2.  Bond lengths between Fe atoms and O atoms, rare-earth atoms and O atoms in LiFePO4 without doping and with rare-earth doping structure, respectively.

    键型dM–O (M = Fe, La, Ce)/Å
    Fe—O2.2252.0802.1322.268
    La—O2.5242.4012.4192.523
    Ce—O2.4552.3342.3432.471
    Pr—O2.4422.3192.3312.454
    下载: 导出CSV

    表 3  LiFePO4未掺杂及稀土掺杂(RE = La, Ce, Pr)的弹性常数(单位: GPa)

    Table 3.  Elastic constants (in GPa) of LiFePO4 without doping and with rare earth (RE = La, Ce, Pr) doping.

    C11C22C33C44C55C66C12C23C13
    LiFePO4138182174414943674654
    Ref. [38]139198173375148734653
    LiFe0.875La0.125PO4113153142273535846165
    LiFe0.875Ce0.125PO4106169158313335761947
    LiFe0.875Pr0.125PO4119108172353128669540
    下载: 导出CSV

    表 4  未掺杂与稀土掺杂(RE = La, Ce, Pr)的LiFePO4的体模量(B)、剪切模量(G)、B/G、杨氏模量(E)、泊松比(v)

    Table 4.  Bulk modulus (B), shear modulus (G), B/G, Young’s modulus (E), Poisson’s ratio (v) for LiFePO4 without doping and with rare earth (RE = La, Ce, Pr) doping.

    B/GPaG/GPaB/GE/GPav
    LiFePO492481.921220.2782
    Ref. [38]94481.921240.2800
    LiFe0.875La0.125PO491322.87850.3440
    LiFe0.875Ce0.125PO479372.15950.2987
    LiFe0.875Pr0.125PO487293.00780.3502
    下载: 导出CSV
  • [1]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [2]

    Padhi A K, Nanjundawamy K S, Goodenough J B 1997 J. Electrochem. Soc. 144 1188Google Scholar

    [3]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419Google Scholar

    [4]

    Yamada A, Chung S C 2001 J. Electrochem. Soc. 148 A960Google Scholar

    [5]

    Takahashi M, Tobishima S I, Takei K, Sakurai Y 2002 Solid State Ionics 148 283Google Scholar

    [6]

    Yamada A, Chung S C, Hinokuma K 2001 J. Electrochem. Soc. 148 A224Google Scholar

    [7]

    Huang H, Yin S C, Nazar L F 2001 Electrochem. Solid-State Lett. 4 A170Google Scholar

    [8]

    Chung S Y, Bloking J T, Chiang Y M 2002 Nat. Mater. 1 123Google Scholar

    [9]

    Chung S Y, Chiang Y M 2003 Electrochem. Solid-State Lett. 6 A278Google Scholar

    [10]

    Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q, Huang X J 2003 Phys. Rev. B 68 195108Google Scholar

    [11]

    Wang Z, Sun S, Xia D, Chu W, Zhang S, Wu Z 2008 J. Phys. Chem. C 112 17450Google Scholar

    [12]

    Thackeray M 2002 Nat. Mater. 1 81Google Scholar

    [13]

    Jiang B Q, Hu S F, Wang M W, Ouyang X P, Gong Z Y 2011 Rare Metals 30 115Google Scholar

    [14]

    Ghosh P, Mahanty S, Basu R N 2009 Electrochim. Acta 54 1654Google Scholar

    [15]

    Sun H B, Chen Y G, Xu C H, Zhu D, Huang L H 2012 J. Solid State Electrochem. 16 1247Google Scholar

    [16]

    Ding Y H, Zhang P, Jiang Y, Gao D H 2007 Solid State Ionics 178 967Google Scholar

    [17]

    郑路敏, 钟淑英, 徐波, 欧阳楚英 2019 物理学报 68 138201Google Scholar

    Zheng L M, Zhong S Y, Xu B, Ouyang C Y 2019 Acta Phys. Sin. 68 138201Google Scholar

    [18]

    Tian Y W, Kang X X, Liu L Y, Xu C Q, Qu T 2008 J. Rare Earths 26 279Google Scholar

    [19]

    Luo S H, Tian Y, Li H, Shi K J, Tang Z L, Zhang Z T 2010 J. Rare Earths 28 439Google Scholar

    [20]

    Needham S A, Wang G X, Liu H K, Drozd V A, Liu R S 2007 J. Power Sources 174 828Google Scholar

    [21]

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R 2016 Chin. Phys. B 25 018212Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [25]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [26]

    Zhou F, Kang K, Maxisch T, Ceder G, Morgan D 2004 Solid State Commun. 132 181Google Scholar

    [27]

    Li B, Metiu H 2010 J. Phys. Chem. C 114 12234Google Scholar

    [28]

    Shi S, Tang Y, Ouyang C, Cui L, Xin X, Li P, Zhou W, Zhang H., Lei M, Chen L 2010 J. Phys. Chem. Solids 71 788Google Scholar

    [29]

    Ning F H, Xu B, Shi J, Wu M S, Hu Y Q, Ouyang C Y 2016 J. Phys. Chem. C 120 18428Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [32]

    He B, Chi S T, Ye A J, Mi P H, Zhang L W, Pu B W, Zou Z Y, Ran Y B, Zhao Q, Wang D, Zhang W Q, Zhao J T, Adams S, Avdeev M, Shi S Q 2020 Sci. Data 7 151Google Scholar

    [33]

    Streltsov V A, Belokoneva E L, Tsirelson V G, Hansen N K 1993 Acta Crystallogr., Sect. B 49 147Google Scholar

    [34]

    Xie Y, Yu H T, Yi T F, Zhu Y R 2014 ACS Appl. Mater. Interfaces 6 4033Google Scholar

    [35]

    Andersson A S, Kalska B, Hggstrm L, Thomas J O 2000 Solid State Ionics 130 41Google Scholar

    [36]

    Wang Y, Wang Y, Hosono, E, Wang K Zhou H 2008 Angew. Chem. 47 7461Google Scholar

    [37]

    张华, 唐元昊, 周薇薇, 李沛娟, 施思齐 2010 物理学报 59 5135Google Scholar

    Zhang H, Tang Y H, Zhou W W, Li P J, Shi S Q 2010 Acta Phys. Sin. 59 5135Google Scholar

    [38]

    Maxisch T, Ceder G 2006 Phys. Rev. B 73 174112Google Scholar

    [39]

    Wu Z, Hao X, Liu X, Meng J 2007 Phys. Rev. B 75 054115Google Scholar

    [40]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [41]

    Caravaca M A, Mino J C, Perez V J, Casali R A, Ponce C A 2009 J. Phys. Condens. Matter 21 015501Google Scholar

    [42]

    Pugh S F 2009 Philos. Mag. 45 823Google Scholar

    [43]

    Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M, Shi S Q 2020 Chin. Phys. B 29 068202Google Scholar

    [44]

    Morgan D, Van der Ven A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30Google Scholar

    [45]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [9] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [10] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [11] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究. 物理学报, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [12] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [13] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [14] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] 忻晓桂, 陈香, 周晶晶, 施思齐. LiFePO4 晶格动力学性质的第一性原理研究. 物理学报, 2011, 60(2): 028201. doi: 10.7498/aps.60.028201
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [18] 谢伟, 王银海, 胡义华, 吴浩怡, 邓柳咏, 廖峰. Ca2+离子替代对Sr4Al14O25:Eu2+,Dy3+结构和发光性能的影响. 物理学报, 2010, 59(2): 1148-1154. doi: 10.7498/aps.59.1148
    [19] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究. 物理学报, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  5837
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 修回日期:  2021-03-06
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回