-
由于石墨烯的电导率相比典型的金属材料更大,自旋弛豫时间更长,自旋轨道相互作用更弱,从而在相同的注入电流情况下,自旋电流在石墨烯材料中的耗散作用更弱.基于自旋传输和磁化动力学耦合模型,研究了石墨烯沟道全自旋逻辑器件的开关特性.结果显示,在相同神经元膜电位的受激发放在神经系统的信息传递中起着重要作用.基于一个受动态突触刺激的突触后神经元发放模型,采用数值模拟和傅里叶变换分析的方法研究了动态突触、神经耦合与时间延迟对突触后神经元发放的影响.结果发现:突触前神经元发放频率与Hodgkin-Huxley神经元的固有频率发生共振决定了突触后神经元发放的难易,特定频率范围内的电流刺激有利于神经元激发,动态突触输出的随机突触电流中这些电流刺激所占的比率在很大程度上影响了突触后神经元的发放次数;将突触后神经元换成神经网络后,网络中神经元之间的耦合可以促进神经元的发放,耦合中的时间延迟可以增强这种促进作用,但是不会改变神经耦合对神经元发放的促进模式.Traditional complementary metal-oxide-semiconductor (CMOS) technology has reached nanoscale and its physical limits are determined by atomic theory and quantum mechanics, which results in a series of problems such as deteriorated device reliability, large circuit interconnection delay, and huge static power dissipation. In the past decades, with the discovery of giant magnetoresistance effect and tunnel magnetoresistance effect, spintronics has become a research hotspot in this field. Specially, spin transfer torque effect has been experimentally verified that the magnetization of a ferromagnet layer can be manipulated using spin polarized current rather than an external magnetic field. Spintronics is a new type of electronics which utilizes spin rather than charge as state variable for electrical information processing and storage. As an example, all spin logic (ASL) devices, which stores information by using the magnetization direction of the nanomagnet and communication by using spin current, is generally thought to be a good post-CMOS candidate. Compared with the typical metal material, the graphene material has a large conductivity, long spin relaxation time, and weak spin-orbit interaction. Therefore, the dissipation of spin current in the graphene material is weaker than the counterpart in typical metal when the injected current is identical. In this paper, the switching characteristics of all spin logic device comprised of graphene interconnects are analyzed by using the coupled spin transport and magneto-dynamics model. The results show that comparing with ASL device comprised of copper interconnects, the magnetic moment reversal time of ASL with graphene interconnection is short and the spin current flows into the output magnet is large under the condition of same applied voltage and device size. Meanwhile, the switching delay and the energy dissipation are lower when the interconnects are shorter and narrower. When the critical switching current which is required for the magnetization reversal is applied, the reliable working length of graphene interconnection is significantly longer than that of copper interconnection. So the graphene is the more ideal interconnect material than metal material. Moreover, the switching delay and power dissipation could be further reduced by properly selecting the interconnection dimension. These results mentioned above provide guidelines for the optimization and applications of ASL devices.
[1] Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106
[2] Xu P, Xia K, Gu C Z, Tang L, Yang H F, Li J J 2008 Nature Nanotech. 3 97
[3] Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266
[4] Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905
[5] Volmer F, Drogeler M, Maynicke E, et al. 2013 Phys. Rev. B 88 161405
[6] Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026
[7] Hu J X, Haratipour N, Koester S J 2015 J. Appl. Phys. 117 17B524
[8] Augustine C, Panagopoulos G, Behin-aein B, Srinivasan S, Sarkar A, Roy K 2011 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures San Diego, California, USA, June 8-9, 2011 p129
[9] An Q, Su L, Klein J O, Beux S L, Connor I, Zhao W S 2015 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures Boston, Massachusetts, USA, July 8-10, 2015 p163
[10] Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513
[11] Chang S C, Dutta S, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2015 IEEE J. Explorat. Solid-State Computat. Dev. Circ. 1 49
[12] Han W, Mccreary K M, Pi K, Wang W H, Li Y, Wen H, Chen J R, Kawakami R K 2012 J. Magn. Magn. Mater. 324 369
[13] Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J, Chen Z 2013 Nano Lett. 13 5177
[14] Lin C C, Gao Y, Penumatcha A V, Diep V Q, Appenzeller J, Chen Z 2014 ACS Nano 8 3807
[15] Su L, Zhao W S, Zhang Y, Querlioz D, Zhang Y G, Klein J O, Dollfus P, Bournel A 2015 Appl. Phys. Lett. 106 072407
[16] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nature Nanotech. 9 794
[17] Zhai F, Zhao X F, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442
[18] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[19] Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circ. Syst. I. Reg. Papers 59 2801
[20] Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circ. Syst. I. Reg. Papers 61 393
[21] Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914
[22] Verma S, Murthy M S, Kaushik B K 2015 IEEE Trans. Magn. 51 3400710
[23] Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯2016物理学报65 098501]
[24] Bass J, William P P 2007 J. Phys.:Condens. Matter 19 183201
[25] Takahashi S, Maekawa S 2003 Phys. Rev. B 67 052409
[26] Wang S, Cai L, Qi K, Yang X K, Feng C W, Cui H Q 2016 Micro. Nano Lett. 11 508
-
[1] Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 Proc. IEEE 103 106
[2] Xu P, Xia K, Gu C Z, Tang L, Yang H F, Li J J 2008 Nature Nanotech. 3 97
[3] Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266
[4] Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Electron Dev. 61 2905
[5] Volmer F, Drogeler M, Maynicke E, et al. 2013 Phys. Rev. B 88 161405
[6] Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026
[7] Hu J X, Haratipour N, Koester S J 2015 J. Appl. Phys. 117 17B524
[8] Augustine C, Panagopoulos G, Behin-aein B, Srinivasan S, Sarkar A, Roy K 2011 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures San Diego, California, USA, June 8-9, 2011 p129
[9] An Q, Su L, Klein J O, Beux S L, Connor I, Zhao W S 2015 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures Boston, Massachusetts, USA, July 8-10, 2015 p163
[10] Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513
[11] Chang S C, Dutta S, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2015 IEEE J. Explorat. Solid-State Computat. Dev. Circ. 1 49
[12] Han W, Mccreary K M, Pi K, Wang W H, Li Y, Wen H, Chen J R, Kawakami R K 2012 J. Magn. Magn. Mater. 324 369
[13] Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J, Chen Z 2013 Nano Lett. 13 5177
[14] Lin C C, Gao Y, Penumatcha A V, Diep V Q, Appenzeller J, Chen Z 2014 ACS Nano 8 3807
[15] Su L, Zhao W S, Zhang Y, Querlioz D, Zhang Y G, Klein J O, Dollfus P, Bournel A 2015 Appl. Phys. Lett. 106 072407
[16] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nature Nanotech. 9 794
[17] Zhai F, Zhao X F, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442
[18] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[19] Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circ. Syst. I. Reg. Papers 59 2801
[20] Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circ. Syst. I. Reg. Papers 61 393
[21] Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914
[22] Verma S, Murthy M S, Kaushik B K 2015 IEEE Trans. Magn. 51 3400710
[23] Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯2016物理学报65 098501]
[24] Bass J, William P P 2007 J. Phys.:Condens. Matter 19 183201
[25] Takahashi S, Maekawa S 2003 Phys. Rev. B 67 052409
[26] Wang S, Cai L, Qi K, Yang X K, Feng C W, Cui H Q 2016 Micro. Nano Lett. 11 508
计量
- 文章访问数: 6548
- PDF下载量: 214
- 被引次数: 0