搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含石墨烯临界耦合谐振器的吸收特性研究

许杰 周丽 黄志祥 吴先良

引用本文:
Citation:

含石墨烯临界耦合谐振器的吸收特性研究

许杰, 周丽, 黄志祥, 吴先良

Study on the absorbing properties of critically coupled resonator with graphene

Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang
PDF
导出引用
  • 临界耦合谐振器是一种薄膜结构, 可以吸收几乎所有的入射电磁波而不产生散射. 为了有效的实现和控制临界耦合现象, 本文提出了在临界耦合结构中加入了基于石墨烯的多层薄膜结构来代替原来的吸收薄膜层. 计算表明临界耦合现象出现在近红外波段, 且可以通过调节石墨烯的费米能级来获得不同的临界耦合频率; 另外改变多层薄膜结构中介质的厚度、石墨烯的层数, 实现了临界耦合现象的可调谐性, 同时对于弛豫时间和入射角度对吸收效率的影响也做了相应讨论. 本文理论结果为基于石墨烯的临界耦合器件和光探测器件的设计提供了理论依据.
    A critically coupled resonator (CCR) is a thin-film structure that can absorb nearly all of the incident electromagnetic radiation, leading to null scattering. In order to effectively achieve and control the critical coupling (CC) phenomena, we replace the polymer absorbing layer by a graphene-based multi-film structure. FDFD (finite difference frequency domain) method is used to solve the Maxwell equation, and the graphene's surface conductivity is calculated by using the Kubo formula. Our results demonstrate that the CC phenomenon is realized at the near-infrared frequency and the frequency of absorption peak can be engineered by the Fermi energy of the graphene sheets. With increasing Fermi energy the absorption peak moves to the longer wavelength side. The effective permittivity of a multi-film structure has a strong dependence on the thickness of the dielectric and the layer number of the grapheme sheets in the multi-film structure. It is found that the central frequency of the absorption peak shifts towards longer wavelength side with increasing layer number of the graphene sheets M and the thickness of dielectric d1. Moreover, we also demonstrate that the absorption efficiency is affected by the electron-phonon relaxation time and the incident angle. It is clear that the central frequency of the absorption peak has a slight shift and the absorption is changed with the relaxing time and incident angle. The results offer the theoretical basis to the design of graphene-based critical coupling devices and optical detectors.
      通信作者: 黄志祥, zxhuang@ahu.edu.cn;xlwu@ahu.edu.cn ; 吴先良, zxhuang@ahu.edu.cn;xlwu@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61101064, 51277001)、高等学校博士学科点专项科研基金(批准号: 20123401110009)和教育部新世纪优秀人才支持计划(批准号: NCET-12-0596)资助的课题.
      Corresponding author: Huang Zhi-Xiang, zxhuang@ahu.edu.cn;xlwu@ahu.edu.cn ; Wu Xian-Liang, zxhuang@ahu.edu.cn;xlwu@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101064, 51277001), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123401110009), and the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-12-0596).
    [1]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666

    [2]

    Bao Q L, Kian P L 2012 ACS Nano 6 3677

    [3]

    Wu H Q 2013 Chin. Phys. B 22 098106

    [4]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749

    [5]

    Liu M 2011 Nature 474 64

    [6]

    Vakil A, Engheta N 2011 Science 332 1291

    [7]

    Koppens F H L, Chang D E, García de Abajo F J 2011 Nano. Lett. 11 3370

    [8]

    Thongrattanasiri S, Koppens F H L, García de Abajo F J 2012 Phys. Rev. Lett. 108 047401

    [9]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [10]

    Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119

    [11]

    Nefedov I S, Valaginnopoulos C A, Melnikov L A 2013 J. Opt. 15 114003

    [12]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [13]

    Othman M A K, Guclu C, Capolino F 2013 Opt. Express 21 7614

    [14]

    Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [15]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [16]

    Tischler J R, Bradley M S, Bulovi V 2006 Opt. Lett. 32 2045

    [17]

    Tischler J R 2007 Org. Electron. 8 94

    [18]

    Reddy K N, Gopal A V, Gupta S D 2013 Opt. Lett. 38 2517

    [19]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]

    [20]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [21]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. : Condens. Matter 19 026222

    [22]

    E. H. Hwang, S. Adam, S. Das Sarma 2007 Phys. Rev. Lett. 98 186806

    [23]

    Wang H, Huang Z X, Wu X L, Ren X G 2011 Chin. Phys. B 20 114701

    [24]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 物理学报 61 194701]

  • [1]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666

    [2]

    Bao Q L, Kian P L 2012 ACS Nano 6 3677

    [3]

    Wu H Q 2013 Chin. Phys. B 22 098106

    [4]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749

    [5]

    Liu M 2011 Nature 474 64

    [6]

    Vakil A, Engheta N 2011 Science 332 1291

    [7]

    Koppens F H L, Chang D E, García de Abajo F J 2011 Nano. Lett. 11 3370

    [8]

    Thongrattanasiri S, Koppens F H L, García de Abajo F J 2012 Phys. Rev. Lett. 108 047401

    [9]

    Ferreira A, Peres N M R, Ribeiro R M, Stauber T 2012 Phys. Rev. B 85 115438

    [10]

    Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119

    [11]

    Nefedov I S, Valaginnopoulos C A, Melnikov L A 2013 J. Opt. 15 114003

    [12]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [13]

    Othman M A K, Guclu C, Capolino F 2013 Opt. Express 21 7614

    [14]

    Sreekanth K V, De Luca A, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [15]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [16]

    Tischler J R, Bradley M S, Bulovi V 2006 Opt. Lett. 32 2045

    [17]

    Tischler J R 2007 Org. Electron. 8 94

    [18]

    Reddy K N, Gopal A V, Gupta S D 2013 Opt. Lett. 38 2517

    [19]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]

    [20]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [21]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. : Condens. Matter 19 026222

    [22]

    E. H. Hwang, S. Adam, S. Das Sarma 2007 Phys. Rev. Lett. 98 186806

    [23]

    Wang H, Huang Z X, Wu X L, Ren X G 2011 Chin. Phys. B 20 114701

    [24]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 物理学报 61 194701]

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [3] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [5] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [6] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [7] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟. 扭转双层石墨烯物理性质、制备方法及其应用的研究进展. 物理学报, 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [12] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [13] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [14] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [15] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [16] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [19] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
计量
  • 文章访问数:  6977
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2015-08-14
  • 刊出日期:  2015-12-05

/

返回文章
返回