搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li修饰的C24团簇的储氢性能

祁鹏堂 陈宏善

引用本文:
Citation:

Li修饰的C24团簇的储氢性能

祁鹏堂, 陈宏善

Hydrogen storage properties of Li-decorated C24 clusters

Qi Peng-Tang, Chen Hong-Shan
PDF
导出引用
  • 利用密度泛函理论研究了Li原子修饰的C24团簇的储氢性能. Li原子在C24团簇表面的最佳结合位是五元环. Li原子与C24团簇之间的作用强于Li原子之间的相互作用, 能阻止它们在团簇表面发生聚集. 当Li原子结合到C24表面时, 它们向C原子转移电子后带正电荷. 当氢分子接近这些Li原子时, 在电场作用下发生极化, 通过静电相互作用吸附在Li原子周围. 在Li修饰的C24复合物中, 每个Li原子能吸附两到三个氢分子, 平均吸附能处于0.08到0.13 eV/H2范围内. C24Li6能吸附12个氢分子, 储氢密度达到6.8 wt%.
    Hydrogen is considered as a potentially ideal substitution for fossil fuels in the future sustainable energy system because it is an abundant, clean and renewable energy carrier. A safe, efficient and economic storage method is the crucial prerequistite and the biggest challenge for the wide scale use of hydrogen. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface to volume ratio, unique electronic structure and novel chemical and physical properties. It has been demonstrated that pristine nanostructures are not suitable for hydrogen storage, since they interact weakly with hydrogen molecule and their hydrogen storage density is very low. However, the hydrogen storage capacity of the nanostructures can be significantly enhanced through substitutional doping or decoration by metal atoms. Using density functional theory, we investigate the properties of hydrogen adsorption on Li-decorated C24clusters. Results show that the preferred binding site for Li atom is the pentagonal rings. The interaction of Li atoms with the clusters is stronger than that among Li atoms, thus hindering effectively aggregation of Li atoms on the surface of the cluster. The decorated Li atoms are positively charged due to electron transfer from Li to C atoms. When H2 molecules approach Li atoms, they are moderately polarized under the electric field, and adsorbed around the Li atoms in molecular form. Each Li atom in the Li-decorated C24 complexes can adsorb two to three H2 molecules. The H-H bond lengths of the adsorbed H2 molecules are slightly stretched. The average adsorption energies are in the range of 0.08 to 0.13 eV/H2, which are intermediate between physisorption and chemisorption. C24Li6 can hold up to 12 H2 molecules, corresponding to a hydrogen uptake density of 6.8 wt%. This value exceeds the 2020 hydrogen storage target of 5.5 wt% proposed by the U. S. Department of Energy.
      通信作者: 陈宏善, chenhs@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11164024)和西北师范大学科技创新工程(批准号: NWNU-KJCXGC-03-62)资助的课题.
      Corresponding author: Chen Hong-Shan, chenhs@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11164024), and the Northwest Normal University (Grant No. NWNU-KJCXGC-03-62).
    [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Crabtree G W, Dresselhaus M S, Buchanan M V 2004 Phys. Today 57 39

    [3]

    Schlapbach L, Zttel A 2001 Natrue 414 353

    [4]

    Chen P, Zhu M 2008 Mater. Today 11 36

    [5]

    Graetz J 2009 Chem. Soc. Rev. 38 73

    [6]

    Jena P 2011 J. Phys. Chem. Lett. 2 206

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phy. B 23 067303

    [8]

    Bhatia S K, Myers A L 2006 Langmuir 221688

    [9]

    Lochan R C, Gordon M H 2006 Phys. Chem. Chem. Phys. 8 1357

    [10]

    Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608

    [11]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 129 8999

    [12]

    U. S. Department of Energy, Hydrogen, fuel cells program: FY 2014 Annual Progress Report

    [13]

    Yang J, Sudik A, Wolvertonb C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [14]

    Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem. Sect. A 105 21

    [15]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]

    [16]

    Lu Q L, Huang S G, Li Y D 2013 Acta Phys. Sin. 62 213601 (in Chinese) [卢其亮, 黄守国, 李宜德 2013 物理学报 62 213601]

    [17]

    Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 物理学报 64 096103]

    [18]

    Schur D V, Zaginaichenko S Y, Savenko A F, Bogolepov V A, Anikina N S, Zolotarenko A D, Matysina Z A, Veziroglu T N, Skryabina N E 2011 Int. J. Hydrogen Energy 36 1143

    [19]

    Henwood D, Carey J D 2007 Phys. Rev. B 75 245413

    [20]

    Zhou Z, Zhao J J, Chen Z F, Gao X P, Yan T Y, Wen B, Schleyer P V 2006 J. Phys. Chem. B 110 13363

    [21]

    Kim Y H, Zhao Y Y, Wiiliamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102

    [22]

    Guo Y H, Jiang K, Xu B, Xia Y. D, Yin J, Liu Z G 2012 J. Phys. Chem. C 116 13837

    [23]

    Pupysheva O V, Farajian A A, Yakobson B I 2008 Nano Lett. 8 767

    [24]

    Wu M H, Gao Y, Zhang Z Y, Zeng X C 2012 Nanoscale 4 915

    [25]

    Giri S, Lund F, Núñez A S, Toro-Labbé A 2013 J. Phys. Chem. C 117 5544

    [26]

    Li M, Li Y F, Zhou Z, Shen P W, Chen Z F 2009 Nano Lett. 9 1944

    [27]

    An H, Liu C S, Zeng Z 2011 Phys. Rev. B 83 115456

    [28]

    Tai T B, Nguyen M T 2013 Chem. Commun. 49 913

    [29]

    Durgun E, Jang Y R, Ciraci S 2007 Phys. Rev. B 76 073413

    [30]

    Venkataramanan N S, Belosludov R V, Note R, Sahara R, Mizuseki H, Kawazoe Y 2010 Chem. Phys. 377 54

    [31]

    Lee H, Li J, Zhou G, Duan W, Kim G, lhm J 2008 Phys. Rev. B 77 235101

    [32]

    Chung T C M, Jeong Y, Chen Q, Kleinhammes A, Wu Y 2008 J. Am. Chem. Soc. 130 6668

    [33]

    Chen X W, Yuan F, Gu Q F, Yu X B 2013 J. Mater. Chem. A 1 11705

    [34]

    Yildrim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [35]

    Zhao Y F, Kim Y H, Dillon A C, Heben J M, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [36]

    Shin W H, Yang S H, Goddard W A, Kang J K 2006 Appl. Phys. Lett. 88 053111

    [37]

    Sun Q, Wang Q, Jena P 2005 J. Am. Chem. Soc. 127 14582

    [38]

    Venkataramanan N S, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y 2009 Chem. Phys. 359 173

    [39]

    Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [40]

    Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y, Chen L 2013 Chin. Phy. B 22 067101

    [41]

    Ran W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phy. B 23 023102

    [42]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741

    [43]

    Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D, Zhang Z Y 2008 Phys. Rev. Lett. 100 206806

    [44]

    Cho J H, Park C R 2007 Catal. Today 120 407

    [45]

    An H, Liu C S, Zeng Z, Fan C, Ju X 2011 Appl. Phys. Lett. 98 173101

    [46]

    Li Y C, Zhou G, Li J, Gu B L, Duan W H 2008 J. Phys. Chem. C 112 19268

    [47]

    Frisch M J, et al. 2004 Gaussian 03. Revision E 01. Gaussian Inc, Wallingford CT

    [48]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [49]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [50]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [51]

    Lu T, Chen F W 2012 J. Comp. Chem. 33 580

    [52]

    Martin J M L, El-Yazal J, Francois J P 1996 Chem. Phys. Lett. 255 7

    [53]

    Jones R O, Seifert G 1997 Phys. Rev. Lett. 79 443

    [54]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [55]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [56]

    Chen Z F, Jiao H J, Bhl M, Hirsch A, Thiel W 2001 Theor. Chem. Acc. 106 352

    [57]

    Paulus B 2003 Phys. Chem. Chem. Phys. 5 3364

    [58]

    Malolepsza E, Witek H A, Irle S 2007 J. Phys. Chem. A111 6649

    [59]

    Peng S, Li X J, Zhang Y, Zhao S 2009 J. Struct. Chem. 50 1046

    [60]

    Moradi M, Peyghan A A, Bagheri Z, Kamfiroozi M 2012 J. Mol. Model 18 3535

  • [1]

    Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

    [2]

    Crabtree G W, Dresselhaus M S, Buchanan M V 2004 Phys. Today 57 39

    [3]

    Schlapbach L, Zttel A 2001 Natrue 414 353

    [4]

    Chen P, Zhu M 2008 Mater. Today 11 36

    [5]

    Graetz J 2009 Chem. Soc. Rev. 38 73

    [6]

    Jena P 2011 J. Phys. Chem. Lett. 2 206

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chin. Phy. B 23 067303

    [8]

    Bhatia S K, Myers A L 2006 Langmuir 221688

    [9]

    Lochan R C, Gordon M H 2006 Phys. Chem. Chem. Phys. 8 1357

    [10]

    Eberle U, Felderhoff M, Schth F 2009 Angew. Chem. Int. Ed. 48 6608

    [11]

    Park N, Hong S, Kim G, Jhi S H 2007 J. Am. Chem. Soc. 129 8999

    [12]

    U. S. Department of Energy, Hydrogen, fuel cells program: FY 2014 Annual Progress Report

    [13]

    Yang J, Sudik A, Wolvertonb C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [14]

    Mandal T K, Gregory D H 2009 Annu. Rep. Prog. Chem. Sect. A 105 21

    [15]

    Zhao Y C, Dai Z H, Sui P F, Zhang X L 2013 Acta Phys. Sin. 62 137301 (in Chinese) [赵银昌, 戴振宏, 隋鹏飞, 张晓玲 2013 物理学报 62 137301]

    [16]

    Lu Q L, Huang S G, Li Y D 2013 Acta Phys. Sin. 62 213601 (in Chinese) [卢其亮, 黄守国, 李宜德 2013 物理学报 62 213601]

    [17]

    Tang C M, Wang C J, Gao F Z, Zhang Y J, Xu Y, Gong J F 2015 Acta Phys. Sin. 64 096103 (in Chinese) [唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰 2015 物理学报 64 096103]

    [18]

    Schur D V, Zaginaichenko S Y, Savenko A F, Bogolepov V A, Anikina N S, Zolotarenko A D, Matysina Z A, Veziroglu T N, Skryabina N E 2011 Int. J. Hydrogen Energy 36 1143

    [19]

    Henwood D, Carey J D 2007 Phys. Rev. B 75 245413

    [20]

    Zhou Z, Zhao J J, Chen Z F, Gao X P, Yan T Y, Wen B, Schleyer P V 2006 J. Phys. Chem. B 110 13363

    [21]

    Kim Y H, Zhao Y Y, Wiiliamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102

    [22]

    Guo Y H, Jiang K, Xu B, Xia Y. D, Yin J, Liu Z G 2012 J. Phys. Chem. C 116 13837

    [23]

    Pupysheva O V, Farajian A A, Yakobson B I 2008 Nano Lett. 8 767

    [24]

    Wu M H, Gao Y, Zhang Z Y, Zeng X C 2012 Nanoscale 4 915

    [25]

    Giri S, Lund F, Núñez A S, Toro-Labbé A 2013 J. Phys. Chem. C 117 5544

    [26]

    Li M, Li Y F, Zhou Z, Shen P W, Chen Z F 2009 Nano Lett. 9 1944

    [27]

    An H, Liu C S, Zeng Z 2011 Phys. Rev. B 83 115456

    [28]

    Tai T B, Nguyen M T 2013 Chem. Commun. 49 913

    [29]

    Durgun E, Jang Y R, Ciraci S 2007 Phys. Rev. B 76 073413

    [30]

    Venkataramanan N S, Belosludov R V, Note R, Sahara R, Mizuseki H, Kawazoe Y 2010 Chem. Phys. 377 54

    [31]

    Lee H, Li J, Zhou G, Duan W, Kim G, lhm J 2008 Phys. Rev. B 77 235101

    [32]

    Chung T C M, Jeong Y, Chen Q, Kleinhammes A, Wu Y 2008 J. Am. Chem. Soc. 130 6668

    [33]

    Chen X W, Yuan F, Gu Q F, Yu X B 2013 J. Mater. Chem. A 1 11705

    [34]

    Yildrim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [35]

    Zhao Y F, Kim Y H, Dillon A C, Heben J M, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [36]

    Shin W H, Yang S H, Goddard W A, Kang J K 2006 Appl. Phys. Lett. 88 053111

    [37]

    Sun Q, Wang Q, Jena P 2005 J. Am. Chem. Soc. 127 14582

    [38]

    Venkataramanan N S, Khazaei M, Sahara R, Mizuseki H, Kawazoe Y 2009 Chem. Phys. 359 173

    [39]

    Guo J, Liu Z G, Liu S Q, Zhao X H, Huang K L 2011 Appl. Phys. Lett. 98 023107

    [40]

    Pan H Z, Wang Y L, He K H, Wei M Z, Ouyang Y, Chen L 2013 Chin. Phy. B 22 067101

    [41]

    Ran W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phy. B 23 023102

    [42]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Am. Chem. Soc. 128 9741

    [43]

    Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D, Zhang Z Y 2008 Phys. Rev. Lett. 100 206806

    [44]

    Cho J H, Park C R 2007 Catal. Today 120 407

    [45]

    An H, Liu C S, Zeng Z, Fan C, Ju X 2011 Appl. Phys. Lett. 98 173101

    [46]

    Li Y C, Zhou G, Li J, Gu B L, Duan W H 2008 J. Phys. Chem. C 112 19268

    [47]

    Frisch M J, et al. 2004 Gaussian 03. Revision E 01. Gaussian Inc, Wallingford CT

    [48]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [49]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [50]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [51]

    Lu T, Chen F W 2012 J. Comp. Chem. 33 580

    [52]

    Martin J M L, El-Yazal J, Francois J P 1996 Chem. Phys. Lett. 255 7

    [53]

    Jones R O, Seifert G 1997 Phys. Rev. Lett. 79 443

    [54]

    Jensen F, Koch H 1998 J. Chem. Phys. 108 3213

    [55]

    An W, Shao N, Bulusu S, Zeng X C 2008 J. Chem. Phys. 128 084301

    [56]

    Chen Z F, Jiao H J, Bhl M, Hirsch A, Thiel W 2001 Theor. Chem. Acc. 106 352

    [57]

    Paulus B 2003 Phys. Chem. Chem. Phys. 5 3364

    [58]

    Malolepsza E, Witek H A, Irle S 2007 J. Phys. Chem. A111 6649

    [59]

    Peng S, Li X J, Zhang Y, Zhao S 2009 J. Struct. Chem. 50 1046

    [60]

    Moradi M, Peyghan A A, Bagheri Z, Kamfiroozi M 2012 J. Mol. Model 18 3535

  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制. 物理学报, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] 马丽娟, 韩婷, 高升启, 贾建峰, 武海顺. 单缺陷对Sc, Ti, V修饰石墨烯的结构及储氢性能的影响. 物理学报, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [3] 元丽华, 巩纪军, 王道斌, 张材荣, 张梅玲, 苏俊燕, 康龙. 碱金属修饰的多孔石墨烯的储氢性能. 物理学报, 2020, 69(6): 068802. doi: 10.7498/aps.69.20190694
    [4] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [5] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究. 物理学报, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [6] 周晓锋, 方浩宇, 唐春梅. 三明治结构graphene-2Li-graphene的储氢性能. 物理学报, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [7] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [8] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [11] 赵银昌, 戴振宏, 隋鹏飞, 张晓玲. 二维Li+BC3结构高储氢容量的研究. 物理学报, 2013, 62(13): 137301. doi: 10.7498/aps.62.137301
    [12] 阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰. 锂原子修饰B6团簇的储氢性能研究. 物理学报, 2013, 62(5): 053103. doi: 10.7498/aps.62.053103
    [13] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [14] 黄海深, 王小满, 赵冬秋, 伍良福, 黄晓伟, 李蕴才. 钇覆盖Si@Al12团簇的贮氢性能. 物理学报, 2012, 61(7): 073101. doi: 10.7498/aps.61.073101
    [15] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用. 物理学报, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [16] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [17] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [18] 戴伟, 唐永建, 王朝阳, 孙卫国. 自制吸附仪储氢性能测试研究. 物理学报, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [19] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [20] 刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖. 单壁BN纳米管和碳纳米管物理吸附储氢性能的理论对比研究. 物理学报, 2009, 58(2): 1126-1131. doi: 10.7498/aps.58.1126
计量
  • 文章访问数:  6431
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-23
  • 修回日期:  2015-08-18
  • 刊出日期:  2015-12-05

/

返回文章
返回