搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂质对Nb2GeC性质影响的第一性原理研究

陈俊俊 段济正 张学智 姜欣 段文山

引用本文:
Citation:

杂质对Nb2GeC性质影响的第一性原理研究

陈俊俊, 段济正, 张学智, 姜欣, 段文山

Theoretical investigation of the effects of impurity on the properties of Nb2GeC

Chen Jun-Jun, Duan Ji-Zheng, Zhang Xue-Zhi, Jiang Xin, Duan Wen-Shan
PDF
导出引用
  • 为进一步研究Nb2GeC在辐照环境中的稳定性, 本文研究了O, H和He杂质在Nb2GeC中的稳定情况. 所有杂质的研究都是从替代和间隙两个方面来进行的, 计算得到了替代和间隙的形成能, 存在替代和间隙时Nb2GeC的晶格常数, 以及单胞体积, 并且与完美的晶胞进行了比较. 此外, 通过电荷密度分布和Mulliken 布居, 分析了O, H, He杂质对Nb2GeC 的电子性质的影响.
    MAX phases are potential future materials used in the nuclear industry. Recently, a new MAX phase Nb2GeC is predicted as the most stable compound, and confirmed by thin film synthesis.In the operation of fusion reactor, the accumulation and aggregation of helium and hydrogen produced from transmutation reactions would induce bubble formation and void swelling and further result in embrittlement and irradiation-induced hardening of the materials. High solubility and permeability of tritium and solubility of interstitial impurities like O, C, and N can also lead to embrittlement. In order to further investigate the characters of Nb2Ge in irradiation environment, ab initio calculations are performed on the energetics of O, H and He impurities in Nb2Ge. The study of all the impurities is carried out in two ways, substitutionally and interstitially. Formation energies due to substitution and interstitial are calculated, lattice parameters and unit cell volume of Nb2GeC with substitutional or interstitial impurities are obtained, and its electronic property is analysed by Mulliken population and electron charge density.The formation energies of H substitution are lower than those of O substitution and He substitution, hence H atoms are trapped more easily by some irradiation-induced vacancies. The formation energies of O subtitution indicate the sequence Ef(Osub-Nb)>Ef(Osub-Ge) ≈ Ef(Osub-C), which is related to the strength of bonds. Analysis on electron charge density and Mulliken population shows that C-O bond is stronger than Nb-O and Ge-O bond, and the bond lengths of C-O, Nb-O and Ge-O are 3.256, 2.118 and 1.985 Å respectively. Due to the interaction of O atom with Nb, Ge and C atoms in Nb2Ge, the O atom would deviate from the vacancy, and goes to the deformed sites in the crystal structure. As for H substitution, the formation energies of substitution show the sequence Ef(Hsub-Nb)>Ef(Hsub-Ge) > Ef(Hsub-C). C-H and Nb-H are ionic bond and covalent bond respectively, and their bond lengths are 3.131 and 2.706 Å respectively. The formation energies of He substitution present the sequence: Ef(Hesub-C) > Ef(Hesub-Nb) > Ef(Hesub-Ge), and suggest that the He atom is the easiest to be trapped by C vacancy. All O, H and He interstitials make lattice parameter a increase, c decrease and unit cell V shrink. Besides, the results of substitution and interstitial formation energies show that O, H and He impurities prefer to stay on octahedral sites. These results could provide initial physical picture for further understanding the accumulation and bubble formation of impurities in Nb2GeC.
      通信作者: 段文山, duanws@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275156)资助的课题.
      Corresponding author: Duan Wen-Shan, duanws@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275156).
    [1]

    Zhang P B, Zhao J J, Qin Y, Wen Bin 2011 J. Nucl. Mater. 49 1

    [2]

    Barabash V, Peacock A, Fabritsiev S, Kalinin G, Zinkle S, Rowcliffe A, Rensman J W, Tavassoli A A, Marmy P, Karditsas P J, Gillemot F, Akiba M 2007 J. Nucl. Mater. 21 367

    [3]

    Yang X Y, Lu Y, Zhang P 2015 J. Nucl. Mater. 465 161

    [4]

    Liu W G, Qian Y, Zhang D X, Liu W, Han H 2015 J. Nucl. Mater. 465 254

    [5]

    Jiang S N, Wan F R, Long Y, Liu C X, Zhan Q, Somei O 2013 Acta Physica Sinica 62 166801 (in Chinese) [姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明 2013 物理学报 62 166801]

    [6]

    Gurovich B A, Kuleshova E A, Frolov A S, Maltsev D A, Prikhodko K E, Fedotova S V, Margolin B Z, Sorokin A A 2015 J. Nucl. Mater. 465 565

    [7]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 79 283

    [8]

    Kurtz R J, Abe K, Chernov V M, Kazakov V A, Lucas G E, Matsui H, Muroga T, Odette G R, Smith D L, Zinkle S J 2000 J. Nucl. Mater. 70 283

    [9]

    Stoneham A M, Catlow R, Lidiard A B 2004 J. Phys.: Condens. Matter 16 S2597

    [10]

    Weber W J, Wang L M 1996 N. Yu, Nucl. Instr. Meth. B 116 322

    [11]

    Riley D P, Kisi E H 2007 J. Am. Ceram. Soc. 90 2231

    [12]

    Nappé J C, Monnet I, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M, Thomé L 2011 J. Nucl. Mater. 409 53

    [13]

    Barsoum M W 2000 Prog. Solid State Chem 28 201

    [14]

    Music D, Schneider J M 2007 JOM 59 60

    [15]

    Eklund P, Beckers M, Jansson U, Högberg H, Hultman L 2010 Thin Solid Films 518 1851

    [16]

    Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195

    [17]

    Wang J Y, Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415

    [18]

    Eklund P, Dahlqvist M, Tengstrand O, Hultman L, Lu J, Nedfors N, Jansson U, Ros é n J 2012 Phys. Rev. Lett. 109 035502

    [19]

    Shein I R, Ivanovskii A L 2013 Physica B 410 42

    [20]

    Ali M S, Parvin F, Islam A K M A, Hossain M A 2013 Comput. Mater. Sci. 74 119

    [21]

    Chen J J, Duan J Z, Wang C L, Duan W S, Yang L 2014 Comput. Mater. Sci. 82 521

    [22]

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301 (in Chinese) [谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301]

    [23]

    Liu B, Wang J Y, Li F Z, Zhou Y C 2009 Appl. Phys. Lett. 94 181906

    [24]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [25]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Appl. Phys. 115 023503

    [26]

    Middleburgh S C, Lumpkin G R, Riley D 2013 J. Am. Ceram. Soc. 96 3196

    [27]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Phys. Chem. Solids 75 384

    [28]

    Xu Y G, Ou X D, Rong X M 2014 Mater. Lett. 116 322

    [29]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [30]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [31]

    Sun X, Guo Y S, Wang X Q, Zhang Y 2012 Chin. J. Chem. Phys 25 261

    [32]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [33]

    Lee S-G, Chang K J 1996 Phys. Rev. B 53 9784

    [34]

    Baben M, Shang L, Emmerlich J, Schneider J M 2012 Acta. Mater. 60 4810

    [35]

    Manzar A, Murtaza G, Khenata R, Masood Yousaf, Muhammad S, Hayatullah 2014 Chin. Phys. Lett. 31 067401

    [36]

    Hou Q Y, Guo S Q, Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese) [侯清玉, 郭少强, 赵春旺 2014 物理学报 63 147101]

    [37]

    Qiu P Y 2014 Chin. Phys. Lett. 31 066201

    [38]

    Jia Y F, Shu X L, Xie Y, Chen Z Y 2014 Chin. Phys. B 23 076105

  • [1]

    Zhang P B, Zhao J J, Qin Y, Wen Bin 2011 J. Nucl. Mater. 49 1

    [2]

    Barabash V, Peacock A, Fabritsiev S, Kalinin G, Zinkle S, Rowcliffe A, Rensman J W, Tavassoli A A, Marmy P, Karditsas P J, Gillemot F, Akiba M 2007 J. Nucl. Mater. 21 367

    [3]

    Yang X Y, Lu Y, Zhang P 2015 J. Nucl. Mater. 465 161

    [4]

    Liu W G, Qian Y, Zhang D X, Liu W, Han H 2015 J. Nucl. Mater. 465 254

    [5]

    Jiang S N, Wan F R, Long Y, Liu C X, Zhan Q, Somei O 2013 Acta Physica Sinica 62 166801 (in Chinese) [姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明 2013 物理学报 62 166801]

    [6]

    Gurovich B A, Kuleshova E A, Frolov A S, Maltsev D A, Prikhodko K E, Fedotova S V, Margolin B Z, Sorokin A A 2015 J. Nucl. Mater. 465 565

    [7]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 79 283

    [8]

    Kurtz R J, Abe K, Chernov V M, Kazakov V A, Lucas G E, Matsui H, Muroga T, Odette G R, Smith D L, Zinkle S J 2000 J. Nucl. Mater. 70 283

    [9]

    Stoneham A M, Catlow R, Lidiard A B 2004 J. Phys.: Condens. Matter 16 S2597

    [10]

    Weber W J, Wang L M 1996 N. Yu, Nucl. Instr. Meth. B 116 322

    [11]

    Riley D P, Kisi E H 2007 J. Am. Ceram. Soc. 90 2231

    [12]

    Nappé J C, Monnet I, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M, Thomé L 2011 J. Nucl. Mater. 409 53

    [13]

    Barsoum M W 2000 Prog. Solid State Chem 28 201

    [14]

    Music D, Schneider J M 2007 JOM 59 60

    [15]

    Eklund P, Beckers M, Jansson U, Högberg H, Hultman L 2010 Thin Solid Films 518 1851

    [16]

    Barsoum M W, Radovic M 2011 Annu. Rev. Mater. Res. 41 195

    [17]

    Wang J Y, Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415

    [18]

    Eklund P, Dahlqvist M, Tengstrand O, Hultman L, Lu J, Nedfors N, Jansson U, Ros é n J 2012 Phys. Rev. Lett. 109 035502

    [19]

    Shein I R, Ivanovskii A L 2013 Physica B 410 42

    [20]

    Ali M S, Parvin F, Islam A K M A, Hossain M A 2013 Comput. Mater. Sci. 74 119

    [21]

    Chen J J, Duan J Z, Wang C L, Duan W S, Yang L 2014 Comput. Mater. Sci. 82 521

    [22]

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301 (in Chinese) [谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301]

    [23]

    Liu B, Wang J Y, Li F Z, Zhou Y C 2009 Appl. Phys. Lett. 94 181906

    [24]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [25]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Appl. Phys. 115 023503

    [26]

    Middleburgh S C, Lumpkin G R, Riley D 2013 J. Am. Ceram. Soc. 96 3196

    [27]

    Zhao S J, Xue J M, Wang Y G, Huang Q 2014 J. Phys. Chem. Solids 75 384

    [28]

    Xu Y G, Ou X D, Rong X M 2014 Mater. Lett. 116 322

    [29]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202

    [30]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [31]

    Sun X, Guo Y S, Wang X Q, Zhang Y 2012 Chin. J. Chem. Phys 25 261

    [32]

    Zhang S B, Northrup J E 1991 Phys. Rev. Lett. 67 2339

    [33]

    Lee S-G, Chang K J 1996 Phys. Rev. B 53 9784

    [34]

    Baben M, Shang L, Emmerlich J, Schneider J M 2012 Acta. Mater. 60 4810

    [35]

    Manzar A, Murtaza G, Khenata R, Masood Yousaf, Muhammad S, Hayatullah 2014 Chin. Phys. Lett. 31 067401

    [36]

    Hou Q Y, Guo S Q, Zhao C W 2014 Acta Phys. Sin. 63 147101 (in Chinese) [侯清玉, 郭少强, 赵春旺 2014 物理学报 63 147101]

    [37]

    Qiu P Y 2014 Chin. Phys. Lett. 31 066201

    [38]

    Jia Y F, Shu X L, Xie Y, Chen Z Y 2014 Chin. Phys. B 23 076105

  • [1] 周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞. 一氧化碳纳米管束低压相的第一性原理研究. 物理学报, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [2] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [3] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究. 物理学报, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [5] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [6] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [7] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [8] 唐杰, 张国英, 鲍君善, 刘贵立, 刘春明. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究. 物理学报, 2014, 63(18): 187101. doi: 10.7498/aps.63.187101
    [9] 张学军, 张光富, 金辉霞, 朱良迪, 柳清菊. N, Co共掺杂锐钛矿相TiO2光催化剂的第一性原理研究. 物理学报, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [10] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [11] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [15] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [16] 苏锐, 龙瑶, 姜胜利, 何捷, 陈军. 外部压力下β相奥克托金晶体弹性性质变化的第一性原理研究. 物理学报, 2012, 61(20): 206201. doi: 10.7498/aps.61.206201
    [17] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [18] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [19] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] 李超荣, 吴立军, 陈万春. 高分辨X射线衍射研究杂质对晶体结构完整性的影响. 物理学报, 2001, 50(11): 2185-2191. doi: 10.7498/aps.50.2185
计量
  • 文章访问数:  2760
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-17
  • 修回日期:  2015-08-05
  • 刊出日期:  2015-12-05

杂质对Nb2GeC性质影响的第一性原理研究

  • 1. 西北师范大学与物理与电子工程学院, 兰州 730070;
  • 2. 中国科学院近代物理研究所, 兰州 730000;
  • 3. 中国科学院宁波工业技术研究院, 宁波 315201
  • 通信作者: 段文山, duanws@nwnu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11275156)资助的课题.

摘要: 为进一步研究Nb2GeC在辐照环境中的稳定性, 本文研究了O, H和He杂质在Nb2GeC中的稳定情况. 所有杂质的研究都是从替代和间隙两个方面来进行的, 计算得到了替代和间隙的形成能, 存在替代和间隙时Nb2GeC的晶格常数, 以及单胞体积, 并且与完美的晶胞进行了比较. 此外, 通过电荷密度分布和Mulliken 布居, 分析了O, H, He杂质对Nb2GeC 的电子性质的影响.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回